Internet Programming with Java Course
3.9. JSP Custom Tag Libraries
Excerpts from “Tag Libraries Tutorial 1.0”

© Copyright © 2000 Sun Microsystems, Inc.
Preface

This tutorial describes how to use and develop JavaServer PagesTM (JSPTM) tag libraries. The tutorial assumes that you know how to develop servlets and JSP pages and are familiar with packaging servlets and JSP pages into Web application archives. For information on these topics, see the resources and technical resources areas on the Sun Microsystems servlet and JSP technology Web sites.
What is a Tag Library?

In JavaServer Pages technology, actions are elements that can create and access programming language objects and affect the output stream. The JSP specification defines 6 standard actions that must be provided by any compliant JSP implementation.

In addition to the standard actions, JSP v1.1 technology supports the development of reusable modules called custom actions. A custom action is invoked by using a custom tag in a JSP page. A tag library is a collection of custom tags.

Some examples of tasks that can be performed by custom actions include form processing, accessing databases and other enterprise services such as email and directories, and flow control. Before the availability of custom actions, JavaBeans components in conjunction with scriplets were the main mechanism for performing such processing. The disadvantage of using this approach is that it makes JSP pages more complex and difficult to maintain.

Custom actions alleviate this problem by bringing the benefits of another level of componentization to JSP pages. Custom actions encapsulate recurring tasks so that they can be reused across more than one application and increase productivity by encouraging division of labor between library developers and library users. JSP tag libraries are created by developers who are proficient at the Java programming language and expert in accessing data and other services. JSP tag libraries are used by Web application designers who can focus on presentation issues rather than being concerned with how to access databases and other enterprise services.

Some features of custom tags are:

· They can be customized via attributes passed from the calling page.

· They have access to all the objects available to JSP pages.

· They can modify the response generated by the calling page.

· They can communicate with each other. You can create and initialize a JavaBeans component, create a variable that refers to that bean in one tag, and then use the bean in another tag.

· They can be nested within one another, allowing for complex interactions within a JSP page.

The next two sections describe the tasks involved in using and defining tags. The tutorial concludes with a discussion of two tag library examples. The examples include complete binary and source code in two Web application archives.
Using Tags

This section describes how a page author specifies that a JSP page is using a tag library and introduces the different types of tags.
Declaring Tag Libraries

You declare that a JSP page will use tags defined in a tag library by including a taglib directive in the page before any custom tag is used:

<%@ taglib uri="/tlt" prefix="tlt" %>

The uri attribute refers to a URI that uniquely identifies the tag library. This URI can be relative or absolute. If it is relative it must be mapped to an absolute location in the taglib element of a Web application deployment descriptor, the configuration file associated with Web applications developed according to the Java Servlet and JavaServer Pages specifications. The prefix attribute defines the prefix that distinguishes tags provided by a given tag library from those provided by other tag libraries.
Types of Tags

JSP custom actions are expressed using XML syntax. They have a start tag and end tag, and possibly a body:

<tlt:tag>

 body

</tlt:tag>

A tag with no body can be expressed as follows:

<tlt:tag />

Simple Tags
The following simple tag invokes an action that creates a greeting:

<tlt:greeting />

Tags With Attributes
The start tag of a custom action can contain attributes in the form attr="value". Attributes serve to customize the behavior of a tag just as parameters are used to affect the outcome of executing a method on an object.

Tag attributes can be set from one or more parameters in the request object or from a String constant. The only types of attributes that can be set from request parameter values and String constants are those listed in Table 1; the conversion applied is that shown in the table. When assigning values to indexed attributes the value must be an array; the rules just described apply to the elements.

	Property Type
	Conversion on String Value

	boolean or Boolean
	As indicated in java.lang.Boolean.valueOf(String)

	byte or Byte
	As indicated in java.lang.Byte.valueOf(String)

	char or Character
	As indicated in java.lang.Character.valueOf(String)

	double or Double
	As indicated in java.lang.Double.valueOf(String)

	int or Integer
	As indicated in java.lang.Integer.valueOf(String)

	float or Float
	As indicated in java.lang.Float.valueOf(String)

	long or Long
	As indicated in java.lang.Long.valueOf(String)

Table 1. Valid Tag Attribute Assignments
An attribute value of the form <%= scriptlet_expression %> is computed at request time. The value of the expression depends on the type of the attribute's value, which is specified in the object that implements the tag (called a tag handler). Request-time expressions can be assigned to attributes of any type; no automatic conversions will be performed.

The following tag has an attribute named date, which accepts a String value obtained by evaluating the variable today:

<tlt:greeting date="<%= today %>" />

Tags With a Body
A tag can contain custom and core tags, scripting elements, HTML text, and tag-dependent body content between the start and end tag. In the following example, the date information is provided in the body of the tag, instead of as an attribute:

<tlt:greeting>

 <%= today %>

</tlt:greeting>

Choosing Between Passing Information as Attributes or Body
As shown in the last two sections, it is possible to pass a given piece of data as an attribute of the tag or to the tag's body. Generally speaking, any data that is a simple string or can be generated by evaluating a simple expression is best passed as an attribute.

Tags That Define Scripting Variables
A tag can define a variable that can be used in scripts within a page. The following example illustrates how to define and use a scripting variable that contains an object returned from a JNDI lookup. Examples of such objects include enterprise beans, transactions, databases, environment entries, and so on:

<tlt:lookup id="tx" type="UserTransaction"

 name="java:comp/UserTransaction" />

<% tx.begin(); %>

Cooperating Tags
Tags cooperate with each other by means of shared objects.

In the following example, tag1 creates a named object called obj1, which is then reused by tag2. The convention encouraged by the JSP specification is that a tag with attribute named id creates and names an object and the object is then referenced by other tags with an attribute named name.

<tlt:tag1 id="obj1" attr2="value" />

<tlt:tag2 name="obj1" />

In the next example, an object created by the enclosing tag of a group of nested tags is available to all inner tags. Since the object is not named, the potential for naming conflicts is reduced. The following example illustrates how a set of cooperating nested tags would appear in a JSP page.

<tlt:outerTag>

 <tlt:innerTag />

</tlt:outerTag>

Defining Tags

To define a tag, you need to:

· Develop a tag handler and helper classes for the tag

· Declare the tag in a tag library descriptor

This section describes the properties of tag handlers and tag library descriptors and explains how to develop tag handlers and library descriptor elements for each type of tag introduced in the previous section.
Tag Handlers

A tag handler is an object invoked by a JSP container to evaluate a custom tag during the execution of the JSP page that references the tag. Tag handler methods are called by the JSP page implementation class at various points during the evaluation of the tag.

When the start tag of a custom tag is encountered, the JSP page implementation class calls methods to initialize the appropriate handler and then invokes the handler's doStartTag method. When the custom end tag is encountered, the handler's doEndTag method is invoked. Additional methods are invoked in between when a tag handler needs to interact with the body of the tag.

In order to provide a tag handler implementation, you must implement the methods that are invoked at various stages of processing the tag. The methods are summarized in Table 2.

	Tag Handler Type
	Methods

	Simple
	doStartTag, doEndTag, release

	Attributes
	doStartTag, doEndTag, set/getAttribute1...N

	Body, No Interaction
	doStartTag, doEndTag, release

	Body, Interaction
	doStartTag, doEndTag, release, doInitBody, doAfterBody

Table 2 Tag Handler Methods
A tag handler has access to an API that allows it to communicate with the JSP page. The entry point to the API is the page context object through which a tag handler can access to all the other implicit objects (request, session, and application) accessible from a JSP page. Implicit objects can have attributes associated with them. Such attributes are accessed using the appropriate [set/get]Attribute method.

If the tag is nested, a tag handler also has access to the handler (called the parent) associated with the enclosing tag.

Tag handlers must implement either the Tag or BodyTag interfaces. Interfaces can be used to take an existing Java object and make it a tag handler. For newly created handlers, you can use the TagSupport and BodyTagSupport classes as base classes. You can download documentation that describes these interfaces and classes from the JSP specification download page.
Tag Library Descriptors

A tag library descriptor (TLD) is an XML document that describes a tag library. A TLD contains information about a library as a whole and about each tag contained in the library. TLDs are used by a JSP container to validate the tags and by JSP development tools.

The following TLD elements are used to define a tag library:

<taglib>

<tlibversion> - The tag library's version

<jspversion> - The JSP specification version the tag library depends on

<shortname> - A simple default name that could be used by a JSP page authoring tool to create names with a mnemonic value; for example, shortname may be used as the preferred prefix value in taglib directives and/or to create prefixes for IDs.

<uri> - A URI that uniquely identifies the tag library

<info> - Descriptive information about the tag library

<tag>
...

</tag>

...

</taglib>

The TLD element required for all tags is the one used to specify a tag handler's class:

<tag>

 <tagclass>classname</tagclass>

 ...

</tag>

The following sections will describe the methods and tag library descriptor elements that you need to develop for each type of tag introduced in "Using Tags".
Simple Tags

Tag Handlers
The handler for a simple tag must implement the doStartTag and doEndTag methods of the Tag interface. The doStartTag method is invoked when the start tag is encountered. This method returns SKIP_BODY because a simple tag has no body. The doEndTag method is invoked when the end tag is encountered. The doEndTag method needs to return EVAL_PAGE if the rest of the page needs to be evaluated; otherwise it should return SKIP_PAGE.

The following simple tag:

<tlt:simple />

would be implemented by the following tag handler:

public SimpleTag extends Tag Support {

 public int doStartTag() throws JspException {

 try {

 pageContext.getOut().print("Hello.");

 } catch (Exception ex) {

 throw new JspTagException("SimpleTag: " +

 e.getMessage());

 }

 return SKIP_BODY;

 }

 public int doEndTag() {

 return EVAL_PAGE;

 }

}

TLD bodycontent Element
Tags without bodies must declare that their body content is empty:

<tag>

 ...

 <bodycontent>empty</bodycontent>

</tag>

Tags With Attributes

Defining Attributes in a Tag Handler
For each tag attribute, you must define a property and JavaBeans style get and set methods in the tag handler. For example, the tag handler for the tag

<tlt:twa attr1="value1">

where value1 is of type AttributeClass, must contain the following declaration and methods:

private AttributeClass attr1;

setAttr1(AttributeClass ac) { ... }

AttributeClass getAttr1() { ... }

Note that if your attribute is named id, and your tag handler inherits from the TagSupport class, you do not need to define the property and set and get methods because these are already defined by TagSupport.

A tag attribute whose value is a String can name an attribute of one of the implicit objects available to tag handlers. An implicit object attribute would be accessed by passing the tag attribute value to the [set/get]Attribute method of the implicit object. This is a good way to pass scripting variable names to a tag handler where they are associated with objects stored in the page.

TLD attribute Element
For each tag attribute you must specify whether the attribute is required, and whether the value can be determined by an expression:

<tag>

 ...

 <attribute>

 <name>attr1</name>

 <required>true|false|yes|no</required>

 <rtexprvalue>true|false|yes|no</rtexprvalue>

 </attribute>

</tag>

If a tag attribute is not required, a tag handler should provide a default value.

Attribute Validation
The documentation for a tag library should describe valid values for tag attributes. When a JSP page is translated, a JSP container will enforce any constraints contained in the TLD element for each attribute.

The attributes passed to a tag can also be validated at translation time with the isValid method of a class derived from TagExtraInfo. This class is also used to provide information about scripting variables defined by the tag.

The isValid method is passed the attribute information in a TagData object, which contains attribute-value tuples for each of the tag's attributes. Since the validation occurs at translation time, the value of an attribute that is computed at request time will be set to TagData.REQUEST_TIME_VALUE.

The tag <tlt:twa attr1="value1" /> has the following TLD attribute element:

<attribute>

 <name>attr1</name>

 <required>true</required>

 <rtexprvalue>true

</attribute

This declaration indicates that the value of attr1 can be determined at runtime.

The following isValid method checks that the value of attr1 is a valid boolean value. Note that since the value of attr1 can be computed at runtime, isValid must check whether the tag user has chosen to provide a runtime value.

public class TwaTEI extends TagExtraInfo {

 public boolean isValid(Tagdata data) {

 Object o = data.getAttribute("attr1");

 if (o != null && o != TagData.REQUEST_TIME_VALUE) {

 if (o.toLowerCase().equals("true") ||

 o.toLowerCase().equals("false"))

 return true;

 else

 return false;

 }

 else

 return true;

 }

}

Tags With a Body

Tag Handlers
A tag handler for a tag with a body is implemented differently depending on whether the tag handler needs to interact with the body or not. By interact, we mean that the tag handler reads or modifies the contents of the body or causes iterative evaluation of the body.

Tags That Do Not Interact With the Body

If the tag handler does not need to interact with the body, the tag handler should implement the Tag interface (or be derived from TagSupport). If the body of the tag needs to be evaluated, the doStartTag method needs to return EVAL_BODY_INCLUDE; otherwise it should return SKIP_BODY.

Tags That Interact With the Body

If the tag handler needs to interact with the body, the tag handler must implement BodyTag (or be derived from BodyTagSupport). Such handlers typically implement the doInitBody and the doAfterBody methods. These methods interact with body content passed to the tag handler by the JSP page implementation class.

A body content supports several methods to read and write its contents. A tag handler can use the body content's getString or getReader methods to extract information from the body and the writeOut(out) method to write the body contents to an out stream. The writer supplied to the writeOut method is obtained using the tag handler's getPreviousOut method. This method is used to ensure that a tag handler's results are available to an enclosing tag handler.

If the body of the tag needs to be evaluated, the doStartTag method needs to return EVAL_BODY_TAG; otherwise it should return SKIP_BODY.

doInitBody Method

The doInitBody method is called after the body content is set but before it is evaluated. You generally use this method to perform any initialization that depends on the body content.

doAfterBody Method

The doAfterBody method is called after the body content is evaluated.

Like the doStartTag method, doAfterBody must return an indication of whether to continue evaluating the body. Thus, if the body should be evaluated again, as would be the case if you were implementing an iteration tag, doAfterBody should return EVAL_BODY_TAG; otherwise doAfterBody should return SKIP_BODY.

release Method

A tag handler should reset its state and release any private resources in the release method.

The following example reads the content of the body (which contains an SQL query) and passes it to a object that executes the query. Since the body does not need to be reevaluated, doAfterBody returns SKIP_BODY.

public class QueryTag extends BodyTagSupport {

 public int doAfterBody() throws JspTagException {

 BodyContent bc = getBodyContent();

 // get the bc as string

 String query = bc.getString();

 // clean up

 bc.clearBody();

 try {

 Statement stmt = connection.createStatement();

 result = stmt.executeQuery(query);

 } catch (SQLException e) {

 throw new JspTagException("QueryTag: " +

 e.getMessage());

 }

 return SKIP_BODY;

 }

}

The following example reads the content of the body, transforms that content, and then writes the modified version to the out stream.

public class TransformTag extends BodyTagSupport {

 public int doAfterBody() throws JspTagException {

 BodyContent bc = getBodyContent();

 String body = bc.getString();

 bc.clearBody();

 try {

 getPreviousOut().print(body.transform());

 } catch (IOException e) {

 throw new JspTagException("TransformTag: " +

 e.getMessage());

 }

 return SKIP_BODY;

 }

}

TLD bodycontent Element
For tags that have a body, you must specify the type of the body content:

<tag>

 ...

 <bodycontent>JSP|tagdependent</bodycontent>

</tag>

Body content containing custom and core tags, scripting elements, and HTML text is categorized as JSP; all other types of body content are tagdependent. Note that the value of this element does not affect the interpretation of the body. The bodycontent element is only intended to be used by an authoring tool to present the content of the body.
Tags That Define Scripting Variables

Tag Handlers
A tag handler is responsible for creating and setting the object referred to by the scripting variable into a context accessible from the page. It does this by using the pageContext.setAttribute(name, value, scope) or pageContext.setAttribute(name, value) methods. Typically an attribute passed to the custom tag specifies the name of the scripting variable object; this name can be retrieved by invoking the attribute's get method described in "Defining Attributes in a Tag Handler".

If the value of the scripting variable is dependent on an object present in the tag handler's context it can retrieve the object using the pageContext.getAttribute(name, scope) method.

The usual procedure is that the tag handler retrieves a scripting variable value object, performs some processing on the object, and then sets the scripting variable's value using the pageContext.setAttribute(name, object) method.

The scope that an object can have is summarized in Table 3. The scope constrains the accessibility and lifetime of the object.

	Name
	Accessible From
	Lifetime

	page
	Current page
	Until the response has been sent back to the user or the request is passed to a new page

	request
	Current page and any included or forwarded pages
	Until the response has been sent back to the user

	session
	Current request and any subsequent request from the same browser (subject to session lifetime).
	The life of the user's session

	application
	Current and any future request from the same Web application
	The life of the application

Table 3 Scope of Objects
In addition to setting the value of the variable within the tag handler, you must define a class derived from TagExtraInfo that provides information to the JSP container about the nature of the variable. A TagExtraInfo must implement the method getVariableInfo to return an array of VariableInfo objects containing the following information:

· Variable name

· Variable class

· Whether the variable refers to a new or existing object value.

· The availability of the variable

Table 4 describes the availability of the scripting variable and the methods where the value of the variable must be set or reset.
	Value
	Availability
	Methods

	NESTED
	Between the start tag and the end tag.
	In doInitBody and doAfterBody for a tag handler implementing BodyTag; otherwise in doStartTag.

	AT_BEGIN
	From the start tag until the end of the page.
	In doInitBody, doAfterBody, and doEndTag for a tag handler implementing BodyTag; otherwise in doStartTag and doEndTag.

	AT_END
	After the end tag until the end of the page.
	In doEndTag.

Table 4 Scripting Variable Availability
The JSP container passes a parameter called data to the getVariableInfo method that contains an attribute-value tuples for each of the tag's attributes. These attributes can be used to provide the VariableInfo object with a scripting variable's name and class.

Recall the scripting variable example described in the first section:

<tlt:lookup id="tx" type="UserTransaction"

 name="java:comp/UserTransaction" />

<% tx.begin(); %>

The object retrieved from the JNDI lookup is stored as a page context attribute with the name of the scripting variable.

public LookupTag extends TagSupport {

 private String type;

 private String name;

 public int doStartTag() {

 return SKIP_BODY;

 }

 public int doEndTag() throws JspException {

 try {

 InitialContext context = new InitialContext();

 Object obj = (Object)context.lookup(name);

 pageContext.setAttribute(getId(), obj);

 } catch(javax.naming.NamingException e) {

 throw new JspException("Unable to look up " + name

 + " due to " + e.getMessage());

 }

 return EVAL_PAGE;

 }

}

The scripting variable tx is defined in the following tag extra info class. Since the name (tx) and class (UserTransaction) of the scripting variable were passed in as tag attributes, they are retrieved with the data.getAttributeString method and used to fill in the VariableInfo constructor. To allow the scripting variable tx to be used in the rest of the page, the scope of tx is set to be AT_END.

public class LookupTagTEI extends TagExtraInfo {

 public VariableInfo[] getVariableInfo(TagData data) {

 VariableInfo info1

 = new VariableInfo(

 data.getAttributeString("id"),

 data.getAttributeString("type"),

 true,

 VariableInfo.AT_END);

 VariableInfo[] info = { info1 } ;

 return info;

 }

}

TLD teiclass Element
The TagExtraInfo class defined for each scripting variable must be declared in the tag library descriptor as follows:

 <tag>

 ...

 <teiclass>LookupTagTEI<teiclass>

 </tag>

Cooperating Tags

Tags cooperate by sharing objects. JSP technology supports two styles of object sharing.

The first style requires that a shared object be named and stored in the page context (one of the implicit objects accessible to both JSP pages and tag handlers). To access objects created and named by another tag, a tag handler uses the pageContext.getAttribute(name, scope) method.

In the second style of object sharing, an object created by the enclosing tag handler of a group of nested tags is available to all inner tag handlers. This form of object sharing has the advantage that it uses a private namespace for the objects, thus reducing the potential for naming conflicts.

To access an object created by an enclosing tag, a tag handler must first obtain its enclosing tag with the static method TagSupport.findAncestorWithClass(from, class) or the TagSupport.getParent() method. The former method should be used when a specific nesting of tag handlers cannot be guaranteed. Once the ancestor has been retrieved, a tag handler can access any statically or dynamically created objects. Statically created objects are members of the parent. Private objects can also be created dynamically created. Such objects can be stored in a tag handler with the setValue method and retrieved with the getValue method.

The following example illustrates a tag handler that supports both the named and private object approaches to sharing objects. In the example, the handler for a query tag checks whether an attribute named connection has been set in the doStartTag method. If the connection attribute has been set, the handler retrieves the connection object from the page context. Otherwise, the tag handler first retrieves the tag handler for the enclosing tag, and then retrieves the connection object from that handler.

public class QueryTag extends BodyTagSupport {

 private String connectionId;

 public int doStartTag() throws JspException {

 String cid = getConnection();

 if (cid != null) {

 // there is a connection id, use it

 connection =(Connection)pageContext.

 getAttribute(cid);

 } else {

 ConnectionTag ancestorTag =

 (ConnectionTag)findAncestorWithClass(this,

 ConnectionTag.class);

 if (ancestorTag == null) {

 throw new JspTagException("A query without

 a connection attribute must be nested

 within a connection tag.");

 }

 connection = ancestorTag.getConnection();

 }

 }

}

The query tag implemented by this tag handler could be used in either of the following ways:

<tlt:connection id="con01"> ... </tlt:connection>

<tlt:query id="balances" connection="con01">

 SELECT account, balance FROM acct_table

 where customer_number = <%= request.getCustno()%>

</tlt:query>

<tlt:connection ...>

 <x:query id="balances">

 SELECT account, balance FROM acct_table

 where customer_number = <%= request.getCustno()%>

 </x:query>

</tlt:connection>

The tag library descriptor for the tag handler must indicate that the connection attribute is optional with the following declaration:

<tag>

 <attribute>

 <name>connection</name>

 <required>false</required>

</tag>

Examples

The examples described in this section demonstrate solutions to two recurring problems in developing JSP applications: minimizing the amount of Java programming in JSP pages and ensuring a common look and feel across applications. In doing so, they illustrate many of the styles of tags discussed in the first section.

The complete binary and source code for the examples is in two Web application archives iteration.war and template.war contained in the archive examples.zip. You can unpack the Web application archives with the command jar xvf webapp.war.

When an archive is unpacked, its contents are deposited into the directories listed in the following table. This directory layout is required by the Java Servlet specification and is one that you usually will use while developing an application.

	Directory
	Contents

	webapp
	JSP and HTML files

	webapp/WEB-INF
	web.xml (Web application deployment descriptor) and taglib.tld (tag library descriptor)

	webapp/WEB-INF/classes
	classes accessed by JSP files and servlet implementations

	webapp/WEB-INF/lib
	JAR files containing the binary and source of tag library handler and tag extra info classes

Table 5 Web Application Directory Structure
You can run the examples on Tomcat, the freely available implementation of the Java Servlet and JavaServer Pages technologies, by performing the following steps:

1. Install Tomcat.

2. Download the Web application archives into the directory TOMCAT_HOME/webapps. When an archived Web application is accessed, Tomcat 3.2 automatically unpacks it into the directory TOMCAT_HOME/docBase (where docBase is the application directory specified in server.xml) and adds the context for each archive to the server startup file. If you are using an earlier version of Tomcat you will need to add the following lines to the file TOMCAT_HOME/conf/server.xml:
<Context path="/iteration" docBase="webapps/iteration" debug="0" reloadable="true" />
<Context path="/template" docBase="webapps/template" debug="0" reloadable="true" />

3. Start Tomcat.

4. Invoke the examples by following the links:

http://localhost:8080/iteration

http://localhost:8080/template/example/home

An Iteration Tag

Constructing page content dependent on dynamically generated data often requires the use of flow control scripting statements. By moving the flow control logic to tag handlers, flow control tags reduce the amount of scripting needed in JSP pages.

The iteration tag retrieves objects from a collection stored in a JavaBeans component and assigns them to a scripting variable. The body of the tag retrieves information from the scripting variable. While elements remain in the collection, the iteration tag causes the body to be reevaluated.

JSP Page
The iteration example application contains two JSP pages that uses the iterator tag; one of the pages, index.jsp, is shown below. The page initializes the iteration tag with a collection maintained by a JavaBeans component that represents an organization. The iteration tag populates a table with the names of departments in the organization. The other jsp page, list.jsp, uses the iterator tag to display the members of a selected department.

<%@ taglib uri="/tlt" prefix="tlt" %>

<html>

 <head>

 <title>Organization</title>

 </head>

 <body bgcolor="white">

 <jsp:useBean id="org" class="Organization"/>

 <table border=2 cellspacing=3 cellpadding=3>

 <tlt:iteration name="departmentName" type="String"

 group="<%= org.getDepartmentNames()%>">

 <tr>

 <td>Departments</td>

 </tr>

 <tr>

 <td><a href="list.jsp?deptName=

 <%= departmentName %>">

 <%= departmentName %></td>

 </tr>

 </tlt:iteration>

 </table>

 </body>

</html>

The following figure shows the result of executing list.jsp:

[image: image1.png]— Netscape: Sales |
Fie Edit View Go Communicator

D s new hwe s e mm sem on

] ¢ Bookmarks J Losation: |http: //Localhost 8080/ teration/List. jsp?deptiianc=sales | /| " Whats Rekied

| XML J5P Gpon Soure Bosletops Comestors st J26E Tooks Sun Docermenttn Java Search News

Sales
Name Extension | Email
Dillan, Terry | 98765 trd
Dupont, Jerry | 34567 jad
Hansen, Lee | 45678 lah
Moran, o 12345 im

EEER|

5l

Tag Handler
The iteration tag uses an iterator initialized from the collection provided via the group tag attribute. If the iterator contains more elements, doStartTag sets the value of the scripting variable to the next element and then indicates that the body should be evaluated.

After the body has been evaluated, the doAfterBody method retrieves the body content and writes it to the out stream. The body content is cleared in preparation for another body evaluation. If the iterator contains more elements, doAfterBody again sets the value of the scripting variable to the next element and indicates that the body should be evaluated again, which causes the reexecution of doAfterBody. When there are no remaining elements, doAfterBody terminates the process by returning SKIP_BODY.

private Iterator iterator;

public void setGroup(Collection members) {

 if(members.size() > 0)

 iterator = members.iterator();

}

public int doStartTag() {

 if(iterator == null) {

 return SKIP_BODY;

 }

 if(iterator.hasNext()) {

 pageContext.setAttribute(name, iterator.next());

 return EVAL_BODY_TAG;

 } else {

 return SKIP_BODY;

 }

}

public int doAfterBody() throws JspTagException {

 BodyContent body = getBodyContent();

 try {

 body.writeOut(getPreviousOut());

 } catch (IOException e) {

 throw new JspTagException("IterationTag: " +

 e.getMessage());

 }

 // clear up so the next time the body content is empty

 body.clearBody();

 if (iterator.hasNext()) {

 pageContext.setAttribute(name, iterator.next());

 return EVAL_BODY_TAG;

 } else {

 return SKIP_BODY;

 }

}

Tag Extra Info Class
The scripting variable is defined in the following tag extra info class. Since the name (member) and class (Member) of the scripting variable were passed in as tag attributes, they are retrieved with the data.getAttributeString method and used to fill in the VariableInfo constructor.

public class IterationTEI extends TagExtraInfo {

 ...

 public VariableInfo[] getVariableInfo(TagData data) {

 VariableInfo info1

 = new VariableInfo(

 data.getAttributeString("name"),

 data.getAttributeString("type"),

 true,

 VariableInfo.NESTED);

 VariableInfo [] info = { info1 };

 return info;

 }

}

A Template Mechanism

A template mechanism provides a way to separate the common elements that are part of each screen from the elements that change with each screen of an application. Putting all the common elements together into one file makes it easier to maintain and enforce a consistent look and feel in all the screens. It also makes development of individual screens easier since the designer can focus on portions of a screen that are specific to that screen while the template takes care of the rest.

The template is a JSP page, with place holders for the parts that need to change with each screen. Each of these place holders is referred to as a parameter of the template. For example, a simple template could include a title parameter for the top of the generated screen and a body parameter to refer to a JSP page for the custom content of the screen.

Once you have a template, you can generate different presentation screens from it simply by passing it different parameters.

JSP Page
The entry page of the example, main.jsp, is shown below. The first part of the page uses a set of nested tags-definition, screen, and parameter-to define a table of screen definitions for an application and select a specific definition based on the request attribute selectedScreen.

<%@ taglib uri="/tlt" prefix="tlt" %>

<tlt:definition name="tutorial"

 screen="<%= (String)request.

 getAttribute(\"selectedScreen\") %>">

 <tlt:screen id="/home">

 <tlt:parameter parameter="title" value="Home Page"

 direct="true"/>

 <tlt:parameter parameter="banner" value="/banner.jsp"

 direct="false"/>

 <tlt:parameter parameter="body" value="/home.jsp"

 direct="false"/>

 </tlt:screen>

 <tlt:screen id="/first">

 <tlt:parameter parameter="title" value="First Page"

 direct="true"/>

 ...

 <tlt:screen id="/second">

 ...

</tlt:definition>

The second part of the page uses the insert tag to insert parameters from the

selected definition into the application screen.

<html>

 <head>

 <title>

 <tlt:insert definition="tutorial"

 parameter="title"/>

 </title>

 </head>

 <body bgcolor="white">

 <tlt:insert definition="tutorial" parameter="banner"/>

 <tlt:insert definition="tutorial" parameter="body"/>

 </body>

</html>

The template is instantiated by the Dispatcher servlet. This servlet first gets requested screen and stores as an attribute of the request. This is necessary because when the request is forwarded to main.jsp, the request URL info no longer reflects the original request (/home/example/*.jsp), but instead reflects the path (/template/main.jsp) of the forwarded page. Finally the servlet dispatches the request to main.jsp:

public class Dispatcher extends HttpServlet {

 public void doGet(HttpServletRequest request,

 HttpServletResponse response) throws ServletException {

 request.setAttribute("selectedScreen",

 request.getPathInfo());

 try {

 getServletConfig().

 getServletContext().getRequestDispatcher(

 "/main.jsp").forward(request, response);

 } catch(Exception e) {

 e.printStackTrace();

 }

 }

}

The following figures show the home and first pages of the application:

[image: image2.png]Jg\ Netscape: Home Page \ - \J

File Edit View Go Gommunicaor Help

]aw Fowad Recal Hme Senh Nescge Pt Seeuty Sup

] ¢ Bookmarks J Losation: hittp: //Localhost 8080, tenplate/exanple/hone /| " Whats Relaied
=

Tag Libraries Tutorial Template

The home page

The first page
The second page

= I % @ oP @

[image: image3.png]-1
el

] Bak Fowad Recal Hme
] ¢ Bookmarks J Loation: hittp: //Localhost 8080, tenplate/exanple/fixst /| @7 Whats Relaied

— Netscape: First Page

File Edit View Go Gommunicaor
Seah Nescage Pt Securty sip

| XL J5P Gpon Soure Bosletops Comestors st J26E Tooks Sun Docarmenttn Java Search News

Tag Libraries Tutorial Template

The first page

Home

[% o9 @ 2|

=]

Tag Handlers
The template tag library contains four tag handlers: DefinitionTag, ScreenTag, ParameterTag, and InsertTag. These tag handlers demonstrate the use of cooperating tags. DefinitionTag, ScreenTag, and ParameterTag comprise a set of nested tags handlers in which private objects are shared between parent and child tags. DefinitionTag creates a named object called definition that is used by InsertTag.

In doStartTag, DefinitionTag creates a private object that contains a hashtable of screen definitions. A screen definition consists of a screen identifier and a set of parameters associated with the screen. The table of screen definitions is filled in by ScreenTag and ParameterTag from text provided as attributes to these tags. Table 6 shows the contents of the screen definitions hashtable for the JSP page discussed in the previous section.

	Screen ID
	Title
	Banner
	Body

	/home
	Home Page
	/banner.jsp
	/home.jsp

	/first
	First Page
	/banner.jsp
	/first.jsp

	/second
	Second Page
	/banner.jsp
	/second.jsp

Table 6 Screen Definitions
In doEndTag, DefinitionTag creates a public object of class Definition, selects a screen definition based on the URL passed in the request, and uses the definition to initialize the Definition. If the URL passed in the request is /home, the Definition contains the items from the first row of Table 6:

	Title
	Banner
	Body

	Home Page
	/banner.jsp
	/home.jsp

public int doStartTag() {

 Hashtable screens = null;

 try {

 // look for the screens object or create if it does not exist

 screens = (Hashtable) getValue("screens");

 if (screens == null)

 setValue("screens", new Hashtable());

 else

 ...

 } catch (Exception e) {

 ...

 }

 return EVAL_BODY_INCLUDE;

}

public int doEndTag()throws JspTagException {

 try {

 Definition definition = new Definition();

 Hashtable screens = null;

 ArrayList params = null;

 TagSupport screen = null;

 if (getValue("screens") != null)

 screens = (Hashtable) getValue("screens");

 if (screens != null)

 params = (ArrayList) screens.get(screenId);

 else

 ...

 if (params == null)

 ...

 Iterator ir = null;

 if (params != null)

 ir = params.iterator();

 while ((ir != null) && ir.hasNext())

 definition.setParam((Parameter) ir.next());

 // put the definition in the page context

 pageContext.setAttribute(

 definitionName, definition);

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 return EVAL_PAGE;

}

InsertTag uses the Definition object to insert parameters of the screen definition into the response. First it retrieves the definition object from the page context. The isDirect parameter attribute determines whether the parameter value is directly inserted into the response or treated as the name of a JSP file which is dynamically included into the response.

The definition for the URL /home is shown below. The definition specifies that the value of the Title parameter should be inserted directly into the output stream, but the values of Banner and Body should be dynamically included.

	Parameter Name
	title
	banner
	body

	Parameter Value
	Home Page
	/banner.jsp
	/home.jsp

	IsDirect
	true
	false
	false

public int doStartTag() {

 // get the definition from the page context

 try {

 definition = (Definition) pageContext.

 getAttribute(definitionName);

 } catch (NullPointerException e) {

 ...

 }

 // get the parameter

 if (parameterName != null && definition != null)

 parameter = (Parameter)definition.

 getParam(parameterName);

 if (parameter != null)

 directInclude = parameter.isDirect();

 return SKIP_BODY;

}

public int doEndTag()throws JspTagException {

 // flush data

 try {

 pageContext.getOut().flush();

 } catch (Exception e) {

 ...

 }

 try {

 // if parameter is direct, print to out

 if (directInclude && parameter != null)

 pageContext.getOut().print(parameter.getValue());

 // if parameter is indirect,

 // include results of dispatching to page

 else {

 if ((parameter != null) &&

 (parameter.getValue() != null))

 pageContext.getRequest().

 getRequestDispatcher(

 parameter.getValue()).include(

 pageContext.getRequest(),

 pageContext.getResponse());

 }

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 return EVAL_PAGE;

}

Web Application Deployment Descriptor
The Dispatcher servlet is used to forward requests to the application template. The servlet-mapping element in the Web application deployment descriptor maps all URL patterns of the form /example/* to the dispatcher servlet. The servlet element then maps the dispatcher servlet to an instance of the Dispatcher class. The taglib element maps the logical name /tlt to the absolute location of the tag library descriptor. This allows a page author to use the logical name in the taglib page directive.

<servlet>

<servlet-mapping>

 <servlet-name>dispatcher</servlet-name>

 <url-pattern>/example/*</url-pattern>

</servlet-mapping>

 <servlet-name>dispatcher</servlet-name>

 <servlet-class>Dispatcher</servlet-class>

</servlet>

<taglib>

 <taglib-uri>/tlt</taglib-uri>

 <taglib-location>/WEB-INF/taglib.tld</taglib-location>

</taglib>

How Is a Tag Handler Invoked?

The Tag interface defines the basic protocol between a tag handler and JSP page implementation class. It defines the life cycle and the methods to be invoked when the start and end tag of an action are encountered.

The JSP page implementation class invokes the setPageContext, setParent, and attribute setting methods before calling doStartTag. The JSP page implementation class also guarantees that release will be invoked on the tag handler before the end of the page.

Here is a typical tag handler method invocation sequence:

ATag t = new ATag();

t.setPageContext(...);

t.setParent(...);

t.setAttribute1(value1);

t.setAttribute2(value2);

t.doStartTag();

t.doEndTag();

t.release();

The BodyTag interface extends Tag by defining additional methods that let a tag handler access its body. The interface provides three new methods:

setBodyContent - creates body content and adds to tag handler

doInitBody - called before evaluation of tag body

doAfterBody - called after evaluation of tag body

A typical invocation sequence is:

t.doStartTag();

out = pageContext.pushBody();

t.setBodyContent(out);

// perform any initialization needed after body content is set

t.doInitBody();

t.doAfterBody();

// while doAfterBody returns EVAL_BODY_TAG we

// iterate body evaluation

...

t.doAfterBody();

t.doEndTag();

t.pageContext.popBody();

t.release();

