Databinding in Windows Forms

Extracts from Microsoft .NET Framework Common Tasks QuickStart –
/"

http://samples.gotdotnet.com/quickstart/howto/

Copyright 2002 Microsoft Corporation. All rights reserved.
Introduction

Data binding provides a simple, convenient, powerful, and transparent way for developers to create a read/write link between the controls on a form and the data in their application (their data model).

Windows Forms supports binding data to ADO.NET DataSet controls, Array controls, ArrayList controls, and so on. A control can be bound to any collection that supports indexed access to the elements in that collection -- to be specific, to any collection that implements the IList interface.

Simple Data Binding

Simple data binding means binding a single value within the data model to a single property of a control. For example, binding TextBox1.Text to Customer.Name. Simple binding is managed by use of the Bindings collection on each control.

Complex Data Binding

Complex data binding means binding a control to a collection (rather than binding a control to a single item within the collection). For example, the DataGrid has a DataSource property that can be set to an entire DataSet or Array. The DataGrid extracts information from the DataSource and displays it. ListBox and ComboBox also use complex data binding.

One-Way and Two-Way Data Binding

One-way data binding describes a process by which a property of a control is bound to the data model for read-only or presentation purposes. When data binding is set up in this fashion, the property reflects the value of the data, but direct changes to the property are not reflected in the data model.

Two-way data binding describes a process by which a property of a control is bound to the data model in a read/write manner. When data binding is set up in this fashion, the property reflects the value of the data and changes to the property are propogated to the data model.

The BindingContext

Each Form has a BindingContext. The BindingContext is responsible for managing the collections of data that controls are bound to. It manages currency and dependency.

Currency: The BindingContext maintains a current position for each collection. Simple data binding uses this current position to determine which object in the collection to bind to a control property. As the current position is changed, so does the object that a control property is bound to.

Dependency: The BindingContext maintains dependency relationships between collections. This allows for the creation of master/detail forms.

Simple Data Binding

This sample demonstrates simple data binding of the Text property on a set of TextBox controls to the properties of a Customer object that is stored as a list of customers. You add simple data bindings by using the DataBindings collection on a control.
textBoxID.DataBindings.Add("Text", custList, "CustomerID");

textBoxTitle.DataBindings.Add("Text", custList, "ContactTitle");

textBoxLastName.DataBindings.Add("Text", custList, "ContactName");

textBoxFirstName.DataBindings.Add("Text", custList, "CompanyName");

textBoxAddress.DataBindings.Add("Text", custList, "Address");

Each TextBox.Text is bound to the current Customer object, as maintained by the BindingContext. To change the current object, you increment or decrement the Position property for the collection by use of the BindingContext. For example, you implement a Move Next button by handling the button's Click event as follows.
private void buttonMoveNext_Click(object sender, System.EventArgs e) {

 this.BindingContext[custList].Position++;

}

The BindingContext raises an event whenever the position changes.
this.BindingContext[custList].PositionChanged += new System.EventHandler(customer_PositionChanged);

private void customer_PositionChanged(object sender, System.EventArgs e) {

 textBoxPosition.Text = "Record " + (this.BindingContext[custList].Position + 1)

 + " of " + custList.Length;

}
Binding to a ComboBox or ListBox
This sample demonstrates binding data to a ComboBox. Binding data to a ListBox follows the same model.

To bind data to the list of items that are displayed, set the DataSource and DisplayMember properties of the ComboBox. The DisplayMember property is used to determine which property of the State object to display in the ComboBox. For example, the following code binds a ComboBox to an array of State objects.
public struct State {

 private string shortName, longName;

 public State(string longName , string shortName) {

 this.shortName = shortName ; this.longName = longName ;

 }

 public string ShortName { get { return shortName; } }

 public string LongName { get { return longName; } }

}

private State[] States = new State[] {

 new State("Alabama","AL"),

....

 new State("Washington" ,"WA),

....

}

comboBoxState.DataSource=States;

comboBoxState.DisplayMember="LongName";

Typically, in a data-bound form, a ComboBox is used to look up up a value. In this example, the form displays a Customer object. Each Customer object has a Region property that contains a state's abbreviated name. You want to display a list of full state names that the user can select from. When the user selects a particular state, you want the Customer region to be updated with the state's abbreviated name, rather than the full name. In order to achieve this, you can do the following:

· set the ComboBox up like the previous example

· set the ValueMember property to point to the state abbreviation property on the State object - State.ShortName

· simple-bind SelectedValue to Customer.Region

The ValueMember property determines which value gets moved into SelectedValue. In the example, whenever the user selects a state by State.LongName, the SelectedValue is the State.ShortName. Whenever the SelectedValue changes, the data-binding moves the new value into the Customer object.
comboBoxState.DataSource=States;

comboBoxState.DisplayMember="LongName";

comboBoxState.ValueMember="ShortName";

comboBoxState.DataBindings.Add("SelectedValue", customersDataSet1, "Customers.Region");
Binding to a DataGrid
The DataGrid displays all the information in an array, collection, or ADO.NET DataTable, as a series of rows. Each row can be edited in place. Changes are automatically moved back into the underlying collection of objects as the user moves from row to row.

When the DataGrid is used to view a DataSet, the user can move across the DataTable objects in a DataSet through their relationships.

In order to use a DataGrid, you simply set the DataSource property to the list of objects to display. If the DataSource is a DataSet, you also need to set the DataMember property to the DataTable to display.
dataGrid1.Size = new System.Drawing.Size(584, 336);

dataGrid1.DataSource = customersDataSet1;

dataGrid1.DataMember = "Customers";

There are a set of properties on the DataGrid that allow you to change the way it displays data. For example, you can set the AlternatingBackColor property to cause alternate rows to be displayed with varying BackColor properties.
dataGrid1.DataSource = customersDataSet1;

dataGrid1.DataMember = "Customers";

dataGrid1.ForeColor = System.Drawing.Color.Navy;

dataGrid1.BackColor = System.Drawing.Color.Gainsboro;

dataGrid1.AlternatingBackColor = System.Drawing.Color.WhiteSmoke;

The DataGrid sample demonstrates how to load a DataSet and display its contents in a DataGrid.

namespace Microsoft.Samples.WinForms.Cs.Grid {

 using System;

 using System.ComponentModel;

 using System.Drawing;

 using System.Windows.Forms;

 using System.Data;

 using System.Data.SqlClient;

 public class Grid : System.Windows.Forms.Form {

 private System.ComponentModel.Container components;

 private System.Windows.Forms.StatusBar statusBar1;

 private Microsoft.Samples.WinForms.Cs.Grid.Data.CustomersDataSet customersDataSet1;

 private System.Windows.Forms.Button buttonLoad;

 private System.Windows.Forms.DataGrid dataGrid1;

 public Grid() {

 // Required by the Windows Forms Designer
 InitializeComponent();

 }

 //Handle the Load Button Click
 //Load the Customers, Orders and OrderDetails Tables and display in the Grid
 private void buttonLoad_Click(object sender, System.EventArgs e) {

 Cursor currentCursor = Cursor.Current;

 try {

 Cursor.Current = Cursors.WaitCursor;

 //Fill the DataSet
 SqlConnection con =
 new SqlConnection("server=(local)\\NetSDK;Trusted_Connection=yes;database=northwind");

 SqlDataAdapter cmdCustomers = new SqlDataAdapter("Select * from Customers", con);

 SqlDataAdapter cmdOrders = new SqlDataAdapter("Select * from Orders", con);

 SqlDataAdapter cmdOrderDetails = new SqlDataAdapter("Select * from [Order Details]", con);

 statusBar1.Text ="Loading Customers...";

 cmdCustomers.Fill(customersDataSet1, "Customers");

 statusBar1.Text ="Loading Orders...";

 cmdOrders.Fill(customersDataSet1, "Orders");

 statusBar1.Text ="Loading Order Details...";

 cmdOrderDetails.Fill(customersDataSet1, "Order_Details");

 statusBar1.Text ="Updating Grid...";

 } finally {

 statusBar1.Text ="Done";

 Cursor.Current = currentCursor;

 }

 }

 protected override void Dispose(bool disposing)

 {

 if (disposing) {

 if (components != null) {

 components.Dispose();

 }

 }

 base.Dispose(disposing);

 }

 private void InitializeComponent() {

 this.components = new System.ComponentModel.Container();

 this.dataGrid1 = new System.Windows.Forms.DataGrid();

 this.statusBar1 = new System.Windows.Forms.StatusBar();

 this.customersDataSet1 = new Microsoft.Samples.WinForms.Cs.Grid.Data.CustomersDataSet();

 this.buttonLoad = new System.Windows.Forms.Button();

 dataGrid1.BeginInit();

 if (dataGrid1.TableStyles.Count == 0) {

 dataGrid1.TableStyles.Add(new DataGridTableStyle());

 }

 this.dataGrid1.Text = "dataGrid1";

 this.dataGrid1.TableStyles[0].PreferredRowHeight = 16;

 this.dataGrid1.TableStyles[0].AlternatingBackColor = System.Drawing.Color.WhiteSmoke;

 this.dataGrid1.Size = new System.Drawing.Size(584, 336);

 this.dataGrid1.DataSource = customersDataSet1;

 this.dataGrid1.DataMember = "Customers";

 this.dataGrid1.ForeColor = System.Drawing.Color.Navy;

 this.dataGrid1.TabIndex = 0;

 this.dataGrid1.Anchor =

AnchorStyles.Top | AnchorStyles.Bottom | AnchorStyles.Left | AnchorStyles.Right;

 this.dataGrid1.Location = new System.Drawing.Point(8, 8);

 this.dataGrid1.BackColor = System.Drawing.Color.Gainsboro;

 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);

 this.Text = "Customer Details";

 this.AcceptButton = buttonLoad;

 this.ClientSize = new System.Drawing.Size(600, 413);

 this.statusBar1.BackColor = System.Drawing.SystemColors.Control;

 this.statusBar1.Location = new System.Drawing.Point(0, 397);

 this.statusBar1.Size = new System.Drawing.Size(600, 16);

 this.statusBar1.TabIndex = 2;

 this.statusBar1.Text = "Click on Load";

 this.customersDataSet1.DataSetName = "CustomersDataSet";

 this.buttonLoad.Anchor = AnchorStyles.Right | AnchorStyles.Bottom;

 this.buttonLoad.Click += new System.EventHandler(buttonLoad_Click);

 this.buttonLoad.FlatStyle = System.Windows.Forms.FlatStyle.Flat;

 this.buttonLoad.Location = new System.Drawing.Point(480, 352);

 this.buttonLoad.Size = new System.Drawing.Size(112, 32);

 this.buttonLoad.TabIndex = 1;

 this.buttonLoad.Text = "&Load";

 this.Controls.AddRange(new System.Windows.Forms.Control[] {

statusBar1, buttonLoad, dataGrid1});

 this.dataGrid1.EndInit();

 }

 [STAThread]

 public static void Main(string[] args) {

 Application.Run(new Grid());

 }

 }

}

Master Detail Forms

In database applications, it is often useful to view a record with a group of related records. For example, you may want to view a customer with the current orders for that customer. A common way to accomplish this is to create a master/detail form.

This sample displays a Datagrid for customers and a DataGrid for the orders for each customer. The first DataGrid displays the list of customers. The second DataGrid displays the list of orders. As the selected customer changes, the second DataGrid updates to display the orders for that customer.

In order to link the two DataGrid objects, you need to set the DataSource of each DataGrid to the same DataSet. You also need to set the DataMember properties to indicate to the Windows Forms BindingContext that they are related. You do this by setting the DataMember for the second DataGrid to the name of the relationship between the Customers and Orders tables - Customers.CustomersOrders.
dataGrid1.DataSource = customersAndOrdersDataSet1;

dataGrid1.DataMember = "Customers";

dataGrid2.DataSource = customersAndOrdersDataSet1;

dataGrid2.DataMember = "Customers.CustomersOrders";
