ASP.NET

Contents:

Introduction: The need for ASP.NET.

Page Framework

Code behind.

Debugging ASP.NET Applications.

State Management and Caching.

Configuration and Delpoyment.

Web Services.

Security.

HttpHandlers and HttpModules.

Building User Controls and Server Controls.
1. Introduction to ASP.NET

1.1. Problems with ASP.OLD today
 - Separation of code and design, Scripting Language Based, State management;

1.1.1. Migrating ASP Pages to ASP.NET

- ASP.NET offers significant improvements over ASP in the areas of performance, state management, scalability, configuration, deployment, security, output cache control, Web farm support, and XML Web service infrastructure.

If you have ASP development skills, the new ASP.NET programming model will seem very familiar to you. However, the ASP object model has undergone significant changes to make it more structured and object-oriented, so most existing ASP pages will have to be modified to some extent in order to run under ASP.NET. Major changes to Visual Basic .NET as well mean that existing ASP pages written with Visual Basic Scripting Edition typically will not port directly to ASP.NET. In most cases, though, the necessary changes will involve only a few lines of code.

- Most developers will probably choose to rewrite existing ASP applications to gain the performance, readability, and maintainability improvements of the new development environment. But, because a Web application can contain both ASP and ASP.NET pages, the conversion does not necessarily have to be carried out on all pieces of the entire Web application at once.

- ASP and ASP.NET can run side by side on an Internet Information Services (IIS) Web server without interference; there is no chance of corrupting an existing ASP application simply by installing ASP.NET. Only files with an .aspx file name extension are processed by ASP.NET; files with an .asp file name extension will continue to be processed by the existing, unchanged ASP engine. You should note, however, that session state and application state are not shared between ASP and ASP.NET pages.

ASP.NET Platform architecture
 – Internet Server Application Programming Interface (ISAPI) extension, integrated into IIS. ASP.OLD was monolithic – i.e. doesn’t use any external service. ASP.NET relies on .NET Framework and makes good use of BCL. There is no need to start your new web applications from scratch.

1.2. New features in ASP.NET:

1.2.1. Web Forms

This is Microsoft attempt to solve the problem of the separation of code and design. ASP.NET now offers a code-behind model reminiscent of the forms designer in Visual Basic. This means that you can now place your code in a separate file and still interact with the page. This separation is done by providing a new event-driven model on top of page execution, as well as providing an object model on top of the HTML in the page. Instead of top-to-bottom linear execution model, events are raised during the execution of a page. Your code sinks those events and responds to them by interacting with the object model that sits on top of the HTML.

In addition to the new executing model, Microsoft has also created a new server-side control model. Unlike the lame Design Time Controls in Visual Interdev, these new models are incredibly useful encapsulations of the common display paradigms. They do not introduce any browser dependencies and they run on the server, not the client. In the few cases where they emit browser dependant code, they sniff the browser and degrade gracefully.

1.2.2. Web Services

They are a good way to transfer the same types of information over the Internet (instead of expensive Value Added Networks) using industry-standard protocols such as HTTP, XML and TCP/IP. Web services are now so easy to create in .NET that individuals or businesses of any size should be able to play in this space. Web services aren’t limited to replacing the traditional Electronic Data Interchange (EDI) protocols. They open up many opportunities that EDI has never made inroads into.

1.2.3. Data Access

When ASP 1.0 first shipped, the data access story at Microsoft was in a state of flux. At the time, Remote Data Objects (RDO) was the technology of choice for Visual Basic Developers. ActiveX Data Objects (ADO) was introduced with the shipment of Visual Basic 5.0.

While ADO was great for what it was designed for – connected data access – it fell short in the disconnected arena. Features were added in successive versions to allow it to work in a disconnected fashion. ADO 1.0 had no support for XML, because it could not predict the impact of XML as a data description language. Neither of these features was designed in from the beginning.

ADO.NET is a new data access technology taking advantage of al the things Microsoft learned from ADO, RDO, OLEDB, ODBC and other preceding data access implementations. It was designed from the beginning to be coupled very tightly to XML and work effectively in a disconnected fashion.

1.2.4. Deployment

 One of the perennial arguments among ASP developers was how much code to migrate into COM objects. Some writers advocated all code living in COM objects and ASP should only contain a single-method call to invoke the COM object. While this might be a great theory it eliminated one of the biggest strengths of ASP: the capability to rapidly create an application and make changes on-the-fly. With the code-behind model inherent in ASP.NET, this situation could have been exacerbated. Instead, Microsoft vastly simplified the deployment model. It is as easy as copying the assemblies into a /bin directory in the application root. ASP.NET will notice that a new version has been copied over and unload the old version and load the new version! Deployment becomes as easy as XCOPY /S.

1.2.5. Configuration.

In the pas, all configuration information for ASP was stored as part of the IIS metabase. This was binary file analogous to the registry that held all setting for IIS and ASP. The only ways to effect changes were to use the Internet Services Manager or to write scripts that utilized the Active Directory Services Interfaces (ADSI) to automate changes. This process made it very difficult to synchronize the settings of multiple servers in a Web farm.

ASP.NET introduces new paradigm for all settings. Instead of being stored in the metabase, they are now stored as a hierarchical set of XML configuration files. These files live in the application root and subdirectories. So, now as a developer uses XCOPY to deploy source files, the settings are also deployed! No need to write a bunch of configuration scripts anymore.

1.2.6. State Management.

State management has been vastly improved in ASP.NET. Now, three options exist for maintaining state on the server. The classic ASP 3.0 method of in-memory state on a single server still exists. In addition, an out-of-process state server and a durable state option are stored in a SQL Server.

The other limitation of state services in ASP.Old was the reliance on cookies for connecting a user back up to their state. ASP.NET introduces a new option for cookieless state that performs URL mingling to connect a user to state information.

1.2.7. Caching

The reason most developers use ASP is to lend a dynamic nature to the Web. This could mean accessing backend databases for data or perhaps pulling it in from nontraditional backends.

For data that changes infrequently, caching is a great solution. ASP.NET offers 2 forms of caching. Output caching takes an entire page or part of it and stores the executed results in memory for later delivery. Data caching takes items that were expensive to create, such as DataSets, and caches them on the server side.

2. ASP.NET’s control model

- In ASP.Old, the entire page is essentially treated as a long piece of paper onto which your code placed content. No object model gives you access to the HTML that surrounds your code – just a way for you to output traditional HTML based on the location of your code. ASP.NET changes this by introducing the concept of server controls.

2.1. Server controls

- They are not design-time controls, as was in Visual Interdev. They do not require any particular type of browser – in other words, server controls are not ActiveX controls or client-side behaviors. Server controls are a high-level abstraction of functionality unutilized during page execution to place user-interface elements onto the page.

ASP.NET adds the functionality to the HTML’s own user-interface controls, making them do what you would expect to do; that is save the data that user just spent time typing in.

ASP.NET server controls are identified using ID attribute instead of Name attribute. You are allowed to use both, however. You may want to use the Name attribute if you have client-side script that needs to refer to the control.

ASP.NET server controls require you to add the runat=server attribute. This attribute indicates to ASP.NET that the tag is something more than a built-in HTML tag.

ASP.NET server controls require closing tag. Server controls are implemented using XML namespaces and, like XML, require every element to have a matching closing element. You can use XML style syntax as a shortcut creating a tag such as <INPUT TYPE=text RUNAT=server/>.

<%@ Page language="c#" Codebehind="WebForm1.aspx.cs" AutoEventWireup="false" Inherits="ASPNETSample.WebForm1" errorPage="Errors.aspx"%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >

<HTML>

<HEAD>

<title>WebForm1</title>

<meta content="Microsoft Visual Studio .NET 7.1" name="GENERATOR">

<meta content="C#" name="CODE_LANGUAGE">

<meta content="JavaScript" name="vs_defaultClientScript">

<meta content="http://schemas.microsoft.com/intellisense/ie5" name="vs_targetSchema">

</HEAD>

<body MS_POSITIONING="GridLayout">

<form id="Form1" method="post" runat="server" enctype="multipart/form-data">

<input id="myfile" type="file" runat="server">

<asp:regularexpressionvalidator id="RegularExpressionValidator1" style="Z-INDEX: 101; LEFT: 173px; POSITION: absolute; TOP: 313px"

runat="server" ControlToValidate="TextBox1" ValidationExpression="\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*"

ErrorMessage="RegularExpressionValidator"></asp:regularexpressionvalidator><asp:textbox id="TextBox1" style="Z-INDEX: 102; LEFT: 160px; POSITION: absolute; TOP: 262px"

runat="server" Height="29px" Width="217px"></asp:textbox>

<asp:Button id="btnThrowException" style="Z-INDEX: 103; LEFT: 141px; POSITION: absolute; TOP: 394px"

runat="server" Width="244px" Text="Throw an Expection!"></asp:Button>

<asp:TextBox id="TextBox2" style="Z-INDEX: 104; LEFT: 120px; POSITION: absolute; TOP: 111px"

runat="server" Height="29px" Width="278px"></asp:TextBox><INPUT id="btnUpload" style="Z-INDEX: 105; LEFT: 249px; WIDTH: 90px; POSITION: absolute; TOP: 17px; HEIGHT: 21px"

type="button" value="Upload" runat="server"><INPUT id="Text1" style="Z-INDEX: 106; LEFT: 32px; WIDTH: 204px; POSITION: absolute; TOP: 52px; HEIGHT: 36px"

type="text" size="28" name="Text1" runat="server"><
/form>

</body>

</HTML>

- View State - Using server controls, the data that you entered stays there after the page is destroyed and re-recreated on its round trip to the server. The server controls realize that the desired default behavior is to maintain input; that is, they maintain their state, and they do so automatically. This pertaining of the controls and form state, is called view state. If you don’t want a given control to maintain its state, you can use a new attribute with any server control called EnableViewState. By setting this to false, you can override the default behavior of maintaining form state across posts.

 - There are two types’ server controls: HTML server controls and Web Server controls.

2.1.1. HTML Server controls – they mirror their HTML counterparts. HTML controls include the following:

	HTML Control Class
	HTML tag

	HtmlAnchor
	Anchor

	HtmlButton
	<button />

	HtmlContainerControl
	Any control that requires a closing tag

	HtmlControl
	Any HTML server control

	HtmlForm
	<form></form>

	HtmlImage
	

	HtmlInputButton
	<input type=”button” />

	HtmlInputCheckBox
	<input type=Checkbox />

	HtmlInputFile
	<input type=file />

	HtmlInputHidden
	<input type=hidden />

	HtmlSelect
	<select>.. </select>

	HtmlTableCell
	<TD></TD>

	HtmlTable
	<table>..</table>

	HtmlRow
	<tr>..</tr>

All these tag require the runat=server attribute to make them HTML controls. If you forget to add this attribute, these controls will be treated as normal HTML tags. They will be programmable only via client-side code. HTML controls wrap the related HTML tag with a complete object model that allows access to all the attributes of the tag via properties or methods.

2.1.2. Web Controls – they don’t always map directly to a single HTML tag. In many cases, they are composite controls that represent a large number of HTML tags.

<html>

<head>

<title>Calendar.aspx</title>

</head>

<body>

<form id=”WebForm1” method = “post” runat=”server”>

<asp:calendar id=Calendar1 runat=server/>

</form>

</body>
</html>

The output of this is more than just a single HTML tag. When the page is “rendered”, or sent to the client, the control replaces the <asp:calendar /> with the HTML that represents a monthly calendar. A browser has no idea what to do with the <asp:calendar> tag. HTML dictates that browsers ignore tags they don’t understand. Before the page is sent back to the client browser, ASP.NET renders the calendar control in HTML for you. The layer of abstraction is one of the things that makes Web controls so powerful.

	Web Control Class
	HTML Tag

	AdRotator
	<asp:AdRotator ../>

	BoundColumn
	<asp:BoundColumn ../>

	Button
	<asp:Button .. />

	ButtonColumn
	<asp:ButtonColumn .. />

	Calendar
	<asp:Calendar .. />

	CheckBox
	<asp::CheckBox .. />

	CheckBoxList
	<asp::CheckBoxList .. />

	CompareValidator
	<asp:CompareValidator .. />

	CustomValidator
	<asp:CustomValidator .. />

	DataList
	<asp:DataList .. />

	DataGrid
	<asp:DataGrid .. />

	HyperLink
	<asp:HyperLink .. />

	Image
	<asp:Image .. />

	ImageButton
	<asp:ImageButton … />

	Label
	<asp:Label .. />

	LinkButton
	<asp:LinkButton .. />

	ListBox
	<asp:ListBox .. />

	ListControl
	 Any list control

	ListItem
	<asp:ListItem .. />

	Panel
	<asp:Panel .. />

	PlaceHolder
	<asp:PlaceHolder .. />

	RadioButton
	<asp:RadioButton .. />

	RadioButtonList
	<asp:RadioButtonList .. />

	RangeValidator
	<asp:RangeValidator .. />

	RegularExpressionValidator
	<asp:RegualExpressionValidator .. />

	Repeater
	<asp:Repeater .. />

	RequiredFieldValidator
	<asp:RequiredFieldValidator .. />

	Table
	<asp:Table .. />

	TableCell
	<asp:TableCell .. />

	TableRow
	<asp:TableRow .. />

	TextBox
	<asp:TextBox .. />

	Xml
	<asp:Xml .. />

2.2. ASP.NET is event-driven.

- Prior to Visual Basic, programs were written in a top-down fashion. That is a program started executing at the top and continued down through the bottom with the potential exception of subroutine of function calls. All that changed with the advent of Visual Basic and the concept of event-driven programming. No longer were programs written in a top-down fashion. Instead, code was broken up into small block that reacted to events. These event handlers would then do the work in response to how the user interacted with the UI. Event-driven programming made thing much easier for the programmer because I became possible to worry less about the order in which things occurred and more about how they actually worked.
2.3. Code Behind – separation presentation from Code

- Code in ASP.Old was difficult to maintain because it was interspersed with HTML markup. Thus, it could be difficult and time consuming to track down a chunk of ASP code that needed to be debugged. The solution to this problem is a tactic that developers on many platforms typically use: separating logic (the code that you write) from presentation (the way data is presented). One tactic for separating code from presentation in ASP.NET is code behind. Code behind is a feature that enables you to take most of or all the code out of an ASP.NET page and place it in a separate file.
- the idea is that the code that deals with a particular object is in different layer “behind” the object. In reality, code behind was just a separate source file fro each form that encapsulated the code related to that form.

- Behind the scenes, ASP.NET parses the code out of the page for you – invisibly in the background. A class is created that inherits from System.Web.UI.Page and includes a class level object declaration for each runat=server control in your page. Alternatively, you can create this class yourself and derive the page from it. This separates the code from the layout of the page.
- The way that code behind in ASP.NET works is that you create a class that inherits from System.Web.UI.Page. This is the base class for a page. The ASPX page then inherits from the class you create.

<%@ Page language="c#" Codebehind="SimplePage3.aspx.cs" Inherits="ASPNETSample.SimplePage3" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >

<HTML>

<HEAD>

<title>SimplePage3</title>

<meta name="GENERATOR" Content="Microsoft Visual Studio .NET 7.1">

<meta name="CODE_LANGUAGE" Content="C#">

<meta name="vs_defaultClientScript" content="JavaScript">

<meta name="vs_targetSchema" content="http://schemas.microsoft.com/intellisense/ie5">

</HEAD>

<body MS_POSITIONING="GridLayout">

<form id="Form1" method="post" runat="server">

<TABLE id="Table1" style="Z-INDEX: 101; LEFT: 6px; WIDTH: 221px; POSITION: absolute; TOP: 191px; HEIGHT: 32px" cellSpacing="1" cellPadding="1" width="221" border="1">

<TR>

<TD style="WIDTH: 153px"><asp:TextBox id="TextBox1" runat="server"></asp:TextBox></TD>

<TD><asp:Button id="Button1" runat="server" Text="Button"></asp:Button></TD>

</TR>

<tr>

<td colspan="2">

<SELECT id="myselect" runat="server" NAME="myselect" width="100%">

<OPTION id="value1" selected>value1</OPTION>

<OPTION id="value2">value2</OPTION>

<option id="value3">value3</option>

</SELECT>

</td>

</tr>

</TABLE>

</form>

</body>

</HTML>

/// Code behind – Simplepage2.aspx.cs
using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

namespace ASPNETSample

{

/// <summary>

/// Summary description for SimplePage3.

/// </summary>

public class SimplePage3 : System.Web.UI.Page

{

protected System.Web.UI.WebControls.TextBox TextBox1;

protected System.Web.UI.HtmlControls.HtmlSelect myselect;

protected System.Web.UI.WebControls.Button Button1;

private void Page_Load(object sender, System.EventArgs e)

{

// Put user code to initialize the page here

}

#region Web Form Designer generated code

override protected void OnInit(EventArgs e)

{

//

// CODEGEN: This call is required by the ASP.NET Web Form Designer.

//

InitializeComponent();

base.OnInit(e);

}

/// <summary>

/// Required method for Designer support - do not modify

/// the contents of this method with the code editor.

/// </summary>

private void InitializeComponent()

{

this.Button1.Click += new System.EventHandler(this.Button1_Click);

this.Load += new System.EventHandler(this.Page_Load);

}

#endregion

private void Button1_Click(object sender, System.EventArgs e)

{

int nSelItemIndex = myselect.SelectedIndex;

ListItem liSelItem = myselect.Items[nSelItemIndex];

String strOutput = String.Format("The selected item is: {0} with index {1}",

liSelItem.Value.ToString(), nSelItemIndex);

Response.Write(strOutput);

}

}

}
- Code behind gives you an additional was to wire up events. It is best not to make the HTML markup know any more than it needs to about the code. An alternative way to define event handlers is in Page_Init(). Other way is by the handler signature – for example if we have handler Button1_Click function, then this is interpreted as a handler for Button1.Click event. This is an alternative way to wire up the vent handlers for ASP.NET with code behind.
2.4. Programming HTML Controls.
2.4.1. HtmlAnchor – it makes it easy to dynamically generate links as needed.
// the aspx page

Test Dynamic Generated Link</td>

// the aspx.cs file

if (Page.Request.IsSecureConnection == true)

{

AnchorTag.HRef = "https://www.wizcom.bg/";

AnchorTag.InnerText = "Wizcom Secure";

}

else

{

AnchorTag.HRef = "http://www.wizcom.bg/";

AnchorTag.InnerText = "Wizcom Normal";

}
3. Page Directives.
- Page directives are commands, inserted at the top of an ASP.NET page, that represent a mixed bag of settings pertaining to how the page is rendered and processed.

	Directive
	Description

	@Page
	A mixed bag of settings, pertaining to how the page is rendered, buffered, globalized and so forth.

	@Control
	Settings specific to how user controls are rendered. This setting is appropriate for user controls only.

	@Import
	Imports a namespace.

	@Implements
	Utilizes an externally defined user control, server control, or COM interface

	@Register
	Registers a server control tag prefix and namespace for use in the page.

	@Assembly
	Links an assembly to the page.

	@OutputCache
	Determines how the page caches output

	@Reference
	Links a page or user control to the current page.

3.1. @Page directive.

- Typical @page directive:
<% @Page language=”C#” debug = “true” trace = “true” %>

This page directive instructs ASP.NET to interpret code in the page as C#, to activate debugging and to execute in Trace mode to assist with debugging and performance analysis.

- The @Page directive is used when you want to change the default settings for a single page in your ASP.NET web application. However, some of the settings in the @Page directive can also be altered for an entire directory (using the Web.config settings file) or an entire server (using Machine.config settings file).

3.1.1. Controlling event handlers use the AutoEventWireup attribute of @Page

- it is used to override the default event procedures used to handle Page events. In general, most of the time this will have any bearings only on the name of the procedure used to handle the Page object’s Load event. When AutoEventWireup is set to true (default setting) the event procedure is called Page_Load().if AutoEventWireup is set to false, you have to create a custom event handler to handle the page object’s events.
- this feature is mostly used with code behind. In order to make the vents fire when AutoEventWireup is set to false, define delegates for he Page_Init in the constructor of the code-behind class. Define delegates for all events in the Page_Init().

// AutoEventWireupAttribute.aspx.cs file

public class AutoEventWireupAttribute : System.Web.UI.Page

{

AutoEventWireupAttribute()

{

this.Init += new EventHandler(this.Page_Init);

}

private void Page_Load(object sender, System.EventArgs e)

{

// Put user code to initialize the page here

base.OnInit(e);

}

#region Web Form Designer generated code

override protected void OnInit(EventArgs e)

{

//

// CODEGEN: This call is required by the ASP.NET Web Form Designer.

//

InitializeComponent();

base.OnInit(e);

}

private void Page_Init(object sender, System.EventArgs e)

{

this.Load += new EventHandler(this.Page_Load);

}

/// <summary>

/// Required method for Designer support - do not modify

/// the contents of this method with the code editor.

/// </summary>

private void InitializeComponent()

{

this.Load += new System.EventHandler(this.Page_Load);

}

#endregion

}
<!-- AutoEventWireupAttribute.aspx page (
<%@ Page language="c#" Codebehind="AutoEventWireupAttribute.aspx.cs" AutoEventWireup="false" Inherits="ASPNETSample.AutoEventWireupAttribute" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >

<html>

 <head>

 <title>AutoEventWireupAttribute</title>

 <meta name="GENERATOR" Content="Microsoft Visual Studio .NET 7.1">

 <meta name="CODE_LANGUAGE" Content="C#">

 <meta name=vs_defaultClientScript content="JavaScript">

 <meta name=vs_targetSchema content="http://schemas.microsoft.com/intellisense/ie5">

 </head>

 <body MS_POSITIONING="GridLayout">

 <form id="Form1" method="post" runat="server">

 </form>

 </body>

</html>

3.1.2. Denoting the Page’s Class Name using the ClassName attribute of @Page directive – used to denote explicitly the name of the class used by the page when it is compiled. This attribute is commonly set by Visual Studio .NET in conjunction with the code-behind feature.

3.1.3. Setting the language using CodePage attribute.

3.1.4. Setting ContentType attribute

- the ContentType attribute maps to an HTTP setting that tells the browser what kind of data to expect as the response to a request. Almost always, the data sent from the Web server will be an HTML page. However, you may want to change this. You can use the ContentType attribute to make this change. Possible values – “text/html” (default), “text/xml” etc.

3.1.5. Activating Debugging using Debug attribute

– setting Debug attribute to true activates ASP.NET Debug mode, which provides rich debugging information in the browser to remote machines, when an error is encountered in an ASP.NET page.
3.1.6. Setting EnableSessionState Attribute

- Session State refers to the capability of a Web application to store information for individual users as the user navigates from page to page. Session state is turned on by default; you may want to consider setting EnableSessionState to false – that deactivates the Sessions state and increase performance.

3.1.7. Activating view state using EnableViewState and EnableViewStateMac attributes

- View state is the feature of ASP.nET that causes a control’s properties to be retained across round trips to the server. View state is enabled by default in ASP.NET. You can set EnableViewState to false, which turns off the View State. Note that it is also possible to turn View sate off on a control-by-control basis, for controls that support it, by setting the control’s property EnableViewState to false.
- Setting EnableViewStateMac to true enables an additional check to ensure that View state information is was not altered between the time it was sent to the browser by the server and the time it was resubmitted to the server (Mac in this context stands for Machine Authentication Check). This is an important security feature that you should employ whenever sensitive data is stored in View state.

3.1.8. Setting ErrorPage Attribute.

- ErrorPage attribute enables you to redirect to a custom error page of your choosing. The value of the attribute can be any URL.

3.2. @Control Directives

- you use @Control directive in place of a @Page directive in a user control file (.ASCX). user controls are script files that provide programmable user-interface functionality.

3.3. @Import directives

- it is used to make classes found in that namespace easier to access.

<% @import namespace = "System.Data" %>

3.3. @Assebly directives
- make your ASP.NET page aware of external components. You can use one of 2 elements wit that directive – Name or Src. Name is the name of the precompiled assembly without the DLL extension. Src represents the source file name (such as myclass.cs).

3.4. @Register directives

- make your ASP.NET page aware of user controls and server controls.

3.5. @OutputCache directives

- controls how page caching works. Page caching is a powerful feature that can improve performance on ASP.NET pages whose content changes infrequently.
4. Determining browser capabilities – through Request.Browser object.

- Request.Browser.ActiveXControls (Supports them ?), Request.Browser.AOL (“Is AOL Browser ?”), Request.Browser.BackgroundSounds (Supports them?), Request.Browser.Beta (Is Beta?), Request.Browser.ClrVersion (“Client’s CLR version”) etc.
5. Page object reference.
5.1. HttpApplicatoinState class (System.Web namespace)
- Provides a way to store information that has application scope. The Application object contains instance objects and methods almost the same as Request and Response objects (instances of HttpRequest and HttpResponse, respectively) that you can use to access the contents of conventional HTML forms.

- You can share information throughout your application by using the HttpApplicationState class, most commonly accessed through the Application property of the HttpContext object. This class exposes a key-value dictionary of objects that you can use to store both .NET Framework objects and scalar values related to multiple Web requests from multiple clients.

This topic provides an overview of application state; discusses how to use application state; introduces application state collections; and covers application state synchronization.

5.1.1. Application State Overview

An ASP.NET application is the sum of all files, pages, handlers, modules, and code that resides in a given virtual directory and its subdirectories and those users can request through that virtual directory hierarchy.

For example, if you develop an application that calculates investment benefits for your company's intranet, you could publish it in a virtual directory named \Invest on a Web server. The directory structure for such an application might look something like this:

\Invest

 \bin

 \image

 \xml

An instance of the HttpApplicationState class is created the first time any client requests a URL resource from within the virtual directory namespace of a particular ASP.NET application. This is the case for each Web application that is stored on the computer. Access to this per-application instance is provided through an HttpContext property named Application. All HTTP modules and handlers, such as an ASP.NET page, have access to an instance of the context and therefore have access to the Application property during a given Web request.

ASP.NET provides the following application-state support:

•
An easy-to-use state facility that is compatible with earlier versions of ASP, works with all .NET-supported languages, and is consistent with other .NET Framework APIs.

•
An application-state dictionary that is available to all request handlers invoked within an application. Unlike Internet Information Services (IIS) and earlier versions of ASP, where only pages can access application state, all IHttpHandler and IHttpModule instances can store and retrieve global variables within the dictionary.

•
A simple and intuitive synchronization mechanism that enables developers to easily coordinate concurrent access to variables stored in the application state.

•
Application-state values that are accessible only from code running within the context of the originating application. Other applications running on the system cannot access or modify the values.

The most common way to access application state is by means of the Application property of the Page object.

5.1.2. Using Application State

Application-state variables are, in effect, global variables for a given ASP.NET application. Like client-side application developers, ASP.NET programmers should always consider the impact of storing anything as a global variable.

The following issues are particularly important in this context:

•
The memory impact of storing something in application state. The memory occupied by variables stored in application state is not released until the value is either removed or replaced, unlike for an individual Web page, in which all resources are torn down at the conclusion of a Web request. Keeping seldom-used 10 MB record sets in application state permanently, for example, is not the best use of system resources. For this extreme example you can find better solutions using the ASP.NET Cache.

•
The concurrency and synchronization implications of storing and accessing a global variable within a multithreaded server environment. Multiple threads within an application can access values stored in application state simultaneously. You should always be careful to ensure that if an application-scoped object is free-threaded, it contains built-in synchronization support. All custom objects that target the common language runtime are free-threaded. If an application-scoped object is not free-threaded, you must ensure that explicit synchronization methods are coded around it to avoid deadlocks, race conditions, and access violations.

Note For performance reasons, the built-in collections in the .NET Framework do not contain built-in synchronization support. You must explicitly use the Lock and Unlock methods provided by the HttpApplicationState class in order to avoid problems when you place them into application state.

•
The scalability implications of storing and accessing a global variable within a multithreaded server environment. Locks should be used whenever an attempt is made to write or update a file. Locks that protect global resources are themselves global, and code running on multiple threads accessing global resources ultimately ends up contending on these locks. This causes the operating system to block the worker threads until the lock becomes available. In high-load server environments, this blocking can cause severe thread thrashing on the system. On multiprocessor systems, it can lead to processor underutilization (since all the threads for a processor theoretically can be stalled while waiting for a shared lock) and significant drops in overall scalability.

•
The life-cycle implications of information stored in application state. The .NET Framework application domain or the process hosting a .NET-based application can be torn down and destroyed at any moment during application execution (as a result of crashes, code updates, scheduled process restarts, and so on). Because data stored in application state is not durable, it is lost if the host containing it is destroyed. If you want state to survive these types of failures, you should store it in a database or other durable store.

•
Application state is not shared across a Web farm (in which an application is hosted by multiple servers) or a Web garden (in which an application is hosted by multiple processes on the same server). Variables stored in application state in either of those scenarios are global only to the particular process in which the application is running. Each application process can have different values. Therefore, you cannot rely on application state to store unique values or update global counters, for example, in Web farm and Web garden scenarios.

Despite these issues, well-designed application-level variables can be very powerful in Web applications. You can do a one-time (or infrequent) loading and calculation of information and then use application state to cache it for speedy, in-memory access during later Web requests.

For example, a stock market Web site might fetch extensive financial stock information (perhaps 40 MB of data) from a database every 5 minutes during the day and then cache it in application state where all subsequent lookup requests can access it. The result is a dramatic improvement in per-request performance, since incoming requests do not require cross-process, cross-computer, or database round trips. On the other hand, a better use of resources for large, transient data blocks might be to use the Cache.

Application State Collections

The HttpApplicationState class exposes two state collections: Contents and StaticObjects

The Contents collection exposes all variable items that have been added to the application-state collection directly through code. For example:

// C# code from within a page, a handler, or Global.asax.

Application["Message"] = " MyMsg";

Application["AppStartTime"] = DateTime.Now;

For compatibility with earlier versions of ASP, these variables also can be accessed using the Contents property of the application object, as in the following example:

// Visual Basic code from within a page, a handler, or Global.asax.

Application.Contents["Message"] = " MyMsg";

Application.Contents["AppStartTime"] = DateTime.Now;

The StaticObjects collection exposes all variable items that have been added to the application-state collection through <object runat="server"> tags in the Global.asax file with a scope of application. For example:

' Global.asax definition.

<object runat="server" scope="application" ID="MyInfo" PROGID="MSWC.MYINFO">

</OBJECT>

Objects cannot be added to the StaticObjects collection from anywhere else within an ASP.NET application. The collection throws a NotSupportedException if you attempt to add objects directly through code.

Note that the .NET page compiler automatically injects member references into all objects stored within the StaticObjects collection at page-compilation time so that developers can access these application objects at page-request time without having to reference the Application collection. For example:

<html>

 </body>

 Application Level Title: <%= MyInfo.Title %>

 <body>

</html>
5.1.3. Application State Synchronization

Multiple threads within an application can simultaneously access values stored in application state. Consequently, when you create something that needs to access application-state values, you must always ensure that the application-state object is free-threaded and performs its own internal synchronization or else performs manual synchronization steps to protect against race conditions, deadlocks, and access violations.

The HttpApplicationState class provides two methods, Lock and Unlock that allow only one thread at a time to access application-state variables.

Calling Lock on the Application object causes ASP.NET to block attempts by code running on other worker threads to access anything in application state. These threads are unblocked only when the thread that called Lock calls the corresponding Unlock method on the Application object.

The following code example demonstrates the use of locking to guard against race conditions:

// C# code from within a page, a handler, or Global.asax.

Application.Lock();

Application["SomeGlobalCounter"] = (int)Application["SomeGlobalCounter"] + 1;

Application.UnLock();

If you do not explicitly call Unlock, the .NET Framework automatically removes the lock when the request completes, when the request times out, or when an unhandled error occurs during request execution and causes the request to fail. This automatic unlocking prevents the application from deadlocking.

5.2. HttpRequest class (System.Web) – represents a requests made by a client. It is typically accessed by programmers through the Request object of contained in ASP.NET Page object.

- you can use the Request object to retrieve the value of cookies, read HTTP header information generated by a Web request, get information about the browser and poll the client for security – related information.

5.3. HttpResponse class (System.Web) – represent the data sent to a client in reply to a request. This can include the response itself (handled by the Write method) as well as headers and configuration data (such as page cache expiry and HTTP headers).
5.4. HttpSessionState class (System.Web)
- Session state is similar to application state, except that it is scoped to the current browser session. If different users are using your application, each will have a different session state. In addition, if the same user leaves your application and then returns later, that user will also have a different session state.
- Session state enables you to:

 I) Uniquely identify browser or client-device requests and map them to an individual session instance on the server.

 II) Store session-specific data on the server for use across multiple browser or client-device requests within the same session.

 III) Raise appropriate session management events. In addition, you can write application code leveraging these events.

6. ASP.NET State Management.
- HTTP by its very nature is a stateless protocol. This doesn’t mean it disregards geographic boundaries; it means that it is not connection oriented. No request of the Web server can rely on data supplied by some other request.

6.1. What are cookies ? early in the genesis of the Web, folks working on the HTTP spec realized that there had to be some way to persist state information across Web requests. Cookies were designed for this purpose. One of the HTTP headers, Set-Cookie header, holds the cookie for the current session. When a HTTP 1.0 compliant browser sees this header, it assumes responsibility for storing that cookie in whatever fashion it sees fit. Furthermore, the browser is expected to include that cookie value with all the future requests it makes of the Web Server.
- Cookie is generated in such a way that it is unique and random. Uniqueness is obviously important.

6.2. Cookie-based session identity – ASP.NET provides a way to maintain state using cookies that is very much in line with the recommendations in RFC 2109. on a user agent’s first visit to a page that uses cookies, a cookie is sent to the user agent by the Set-Cookie header in the HTTP page.

Set-Cookie: ASP.NET_SessionID=sfdaa145jb0mdv55nnhgic55; path=/

6.3. Cookieless Session Identity
– cookie-based session identity is a great idea and uses a feature of HTTP – cookies – that is intended for maintaining state information. At about the same time , the folks who write web browsers needed some new features to add to their features checklists, so they added a feature to disable cookies! This seemed like a great idea, but the problem is that no great way exists for an application to check to see whether cookies are disabled. It can look at the user-agent string to see if the user agent is Internet Explorer 5.5, for example, and then make the assumption that cookies are enabled. If the user had disabled cookies and the application still things they are enabled, it is just going to end up re-creating a new session for the user each time he or she visits.
- cookieless session state works by modifying the URL so that the SessionID is included as part of the URL. When a user accesses the first page of a site, that uses cookieless session state, ASP.NET performs a 302 Redirect back to the same page with the SessionID included in the URL. If for example, the user types in http://localhost/simplecounter.aspx, the user is redirected back to something like http://localhost/ (sfdaa145jb0mdv55nnhgic55)/ simplecounter.aspx.

[image: image1]
 This cookie persists for as long as the web browser is open. This is called session cookie. If the web browser is closed, the cookie is lost.
To maintain the session state, this SessionID must be included in all future requests to the web server. ASP.NET does not alter the application’s HTML code and add the SessionID to the anchor tags.

<%@ Page language="c#" Codebehind="SimplePage3.aspx.cs" Inherits="ASPNETSample.HtmlControlsForm" %>

<%

if (null == Session["Count"]) Session["Count"] = 0;

Session["Count"] = (int)Session["Count"] + 1;

%>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >

<HTML>

<HEAD>

<title>SimplePage3</title>

<meta name="GENERATOR" Content="Microsoft Visual Studio .NET 7.1">

<meta name="CODE_LANGUAGE" Content="C#">

<meta name="vs_defaultClientScript" content="JavaScript">

<meta name="vs_targetSchema" content="http://schemas.microsoft.com/intellisense/ie5">

</HEAD>

<body MS_POSITIONING="GridLayout">

Count = <% = Session["Count"] %>

Logon Time <%= Session["LogonTime"]%>

</body>

</HTML>
- if you want programmatically to determine whether cookieless sessions are in use, it can use the IsCookieless() property on the HttpSessionState object. HttpSessionState is the class that implements all of the session state functionality in ASP.NET.

 Is Cookieless session :
<% if (true == Session.IsCookieless)
Response.Write("True");

 else
Response.Write("False");%>
<!-- SESSION STATE SETTINGS

 By default ASP.NET uses cookies to identify which requests belong to a particular session.

 If cookies are not available, a session can be tracked by adding a session identifier to the URL.

 To disable cookies, set sessionState cookieless="true".

 -->

 <sessionState

 mode="InProc"

 stateConnectionString="tcpip=127.0.0.1:42424"

 sqlConnectionString="data source=127.0.0.1;Trusted_Connection=yes"

 cookieless="true"

 timeout="20"

 />
6.4. Using the Session.
- when a page starts executing, an event is fired that the Session HTTP module listens for. The Session module sinks this event and automatically populates the Session property if session state is required.

Session[“Counter”] = 0;

If the application saved a value, it is probably because the application will need to use it later. Specifying the same key allows the application to retrieve the value:

Response.Write(Session[“Counter”]);

- initializing user session state – to preload some information about the user into session state, we can accomplish this by handling Session_OnStart event.
<script language=”C#” runat=server>

void Session_OnStart(object sender, EventArgs e)

{

Session[“LogonTime”] = DateTime.Now;

}

</script>
6.4. Configurations to store Session State:
-In-Process – default, used in ASP.Old. The data structure that holds the session information is allocated from memory that belongs to the aspnet_wp.exe process. The advantage to this approach is that access to the data is very quick. It is only slightly different from looking up an item in a collection or array that might be in the program itself. When an object is stored using in-process session state, a reference to the object is actually what is stored. The disadvantage to this approach is that the life of the session data mirrors the life of its host process. When aspnet_wp.exe shuts down, it behaves like any well-mannered program and cleans up all its data structures releasing the memory back to the system. At this point, session data ceases to exist.

Note: Editing Global.aspx file or Web.config file and saving it will also clear all the in-process session states.

[image: image8.wmf] [image: image2.wmf] [image: image3.wmf] [image: image4.wmf]

[image: image5]
- Session State using State Server – the developers needs to come up with a way to move the session state data structures outside the aspnet_wp.exe process. In fact, to solve the web farm scenario, the session state data structures must be moved entirely outside the Web server. The ASP.NET State Server provides a solution. ASP.NET State Server is a Windows Service that runs on any machine where ASP.NET is installed. This service hosts the data structures that were in aspnet_wp.exe process before. The advantage of this configuration is that now when aspnet_wp.exe is down, the session data is no longer in its process space but is on the state server instead, so the data survives the shutdown of the process. This configuration also solves the issue of state that arises as the application is scaled using web farm.

[image: image6.wmf]

[image: image7.wmf]

- Downside of ASP.NET State Server is that storing an object requires you to serialize or “freeze dry” the object to transfer to the state server. When you later access it , this process must be reversed. This adds some overhead to persisting object into out-of-process session state.

<sessionState

 mode="stateserver"

 stateConnectionString="tcpip=127.0.0.1:42424"

 sqlConnectionString="data source=127.0.0.1;Trusted_Connection=yes"

 cookieless="true"

 timeout="20"

/>
Sample Web.Config file that enables out-of-process session state
Command line to start State Server:

Net start “ASP.NET State”

-Storing the Session State in SQL Server – by moving the session state out of process, the application is able to work effectively in a Web Farm as well as protect itself against restarts of the process or the Web server. In this environment, there is now a single point of failure – the state server. In case of a restart of the state server, all web servers that rely on it lose their state information. For some design patterns this may be unacceptable, so a third option exists in ASP.NET: storing the state information in SQL Server. By storing the information in SQL Server, a durable session store is achieved that will survive restarts of every machine in your Web Farm, except the database server. With some manual changes to the setup you can even configure it to survive after a restart of the SQL Server.
7. ASP.NET Caching Features

ASP.NET provides two types of caching that you can use to create high-performance Web applications. The first is called output caching, which allows you to store dynamic page and user control responses on any HTTP 1.1 cache-capable device in the output stream, from the originating server to the requesting browser. On subsequent requests, the page or user control code is not executed; the cached output is used to satisfy the request. The second type of caching is traditional application data caching, which you can use to programmatically store arbitrary objects, such as data sets, to server memory so that your application can save the time and resources it takes to recreate them.

ASP.NET allows you to cache the entire response content for dynamic pages on HTTP 1.1 capable mechanisms, including browsers, proxy servers, and the origin Web server where your application resides. This provides a powerful way for you to increase the performance of your Web applications. Called output caching, it allows subsequent requests for a particular page to be satisfied from the cache so the code that initially creates the page does not have to be run upon subsequent requests. Using this technique to cache your site's most frequently accessed pages can increase your Web server's throughput, commonly measured in requests per second, substantially.

You have your choice of a high-level, declarative API, or a low-level, programmatic API when manipulating the output cache for a page. You can use the former by including the @ OutputCache directive in the .aspx file for the page. The @ OutputCache directive can meet nearly all the common needs you may have when you want to cache a page's output. The following directive, when included in an .aspx file, sets an expiration of 60 seconds for the cached output of a dynamically generated page.

<%@ OutputCache Duration="60" VaryByParam="None" %>

CAUTION When you use the @ OutputCache directive, the Duration and VaryByParam attributes are required. If you do not include them, a parser error occurs when the page is first requested. If you do not want to use the functionality that the VaryByParam attribute provides, you must set its value to None. For more information about using the VaryByParam attribute, see Caching Multiple Versions of a Page.

You can use the latter set of APIs to control output cache expirations and policies for a page programmatically by using the HttpCachePolicy class. This class, its methods, and its properties are available through the HttpResponse.Cache property. In turn, you can access this property from the Page object through the Page.Response property. For example, the following code, when included in a page's code-declaration block or its code-behind class, sets an expiration of 60 seconds, using the HttpCachePolicy.SetExpires method, for the dynamically generated page.

[C#]

Response.Cache.SetExpires(DateTime.Now.AddSeconds(60));

[Visual Basic]

Response.Cache.SetExpires(DateTime.Now.AddSeconds(60))

Once you have enabled output caching, the initial HTTP GET request for the page places its dynamic content in the output cache for the amount of time you specify. The output cache satisfies subsequent GET, HEAD, or POST requests for that page until the amount of time you specify expires.

Responses generated by GET requests with query string parameters or form POST requests with parameters can also be cached, but caching for the passed parameters must be explicitly enabled using the @ OutputCache directive's VaryByParam attribute. For more information, see Caching Multiple Versions of a Page.

Remember that any manipulations that you want to make programmatically to the output cache must be made in the code-declaration block of an .aspx file, or in or code-behind class associated with the .aspx file.

@ OutputCache

Declaratively controls the output caching policies of an ASP.NET page or a user control contained in a page. For more information about the output cache, see ASP.NET Caching Features.

<%@ OutputCache Duration="#ofseconds" Location="Any | Client | Downstream | Server | None" VaryByControl="controlname" VaryByCustom="browser | customstring" VaryByHeader="headers" VaryByParam="parametername" %>
Attributes

Duration

The time, in seconds, that the page or user control is cached. Setting this attribute on a page or user control establishes an expiration policy for HTTP responses from the object and will automatically cache the page or user control output.

Note This attribute is required. If you do not include it, a parser error occurs.

Location

One of the OutputCacheLocation enumeration values. The default is Any.

Important This attribute is not supported for @ OutputCache directives included in user controls.

VaryByCustom

Any text that represents custom output caching requirements. If this attribute is given a value of browser, the cache is varied by browser name and major version information. If a custom string is entered, you must override the HttpApplication.GetVaryByCustomString method in your application's Global.asax file.

VaryByHeader

A semicolon-separated list of HTTP headers used to vary the output cache. When this attribute is set to multiple headers, the output cache contains a different version of the requested document for each specified header.

Note Setting the VaryByHeader attribute enables caching items in all HTTP/1.1 caches, not just the ASP.NET cache. This attribute is not supported for @ OutputCache directives in user controls.

VaryByParam

A semicolon-separated list of strings used to vary the output cache. By default, these strings correspond to a query string value sent with GET method attributes, or a parameter sent using the POST method. When this attribute is set to multiple parameters, the output cache contains a different version of the requested document for each specified parameter. Possible values include none, *, and any valid query string or POST parameter name.

Important This attribute is required when you output cache ASP.NET pages. It is required for user controls as well unless you have included a VaryByControl attribute in the control's @ OutputCache directive. A parser error occurs if you fail to include it. If you do not want to specify a parameter to vary cached content, set the value to none. If you want to vary the ouput cache by all parameter values, set the attribute to *.

VaryByControl

A semicolon-separated list of strings used to vary the output cache. These strings represent fully qualified names of properties on a user control. When this attribute is used for a user control, the user control output is varied to the cache for each specified user control property.

Note This attribute is required in a user control @ OutputCache directive unless you have included a VaryByParam attribute. This attribute is not supported for @ OutputCache directives in ASP.NET pages.

Remarks

Setting values for the page output cache is the same as manipulating the HttpCachePolicy.SetExpires and HttpCachePolicy.SetCacheability methods through the HttpResponse.Cache property. Setting the VaryByParam attribute when creating a user control implements partial-page caching for that control.

If a Web Forms page requires authorization to be viewed by a user, the output cache sets the Cache-Control header to private. For more information on all these subjects, see Caching Page Output.

Example

The following example demonstrates how you can set the duration that a page or user control is output cached.

<%@ OutputCache Duration="10" VaryByParam="none" %>

The next example demonstrates how you can instruct the output cache to cache a page or user control by the location and count form parameters from a form's POST or from a query string. Each HTTP request that arrives with a different location or count parameter (or both) is cached for ten seconds. Any subsequent requests with the same parameter values are satisfied from the cache until the entry expires.

<%@ OutputCache Duration="10" VaryByParam="location;count" %>

Caching Multiple Versions of a Page

Depending on its complexity, when an ASP.NET page is requested, there are a number of possible responses that it can generate. For example, if you design your page with an HTML form that allows users to look up retailer locations near their home, and includes city and zip code input boxes, the page response can be different for each user. You can choose to cache a version of the page output for each city, each zip code, or both.

ASP.NET allows you to cache multiple versions of a page response. You can vary the output cache by query string or form POST parameters that are passed with a request, by the HTTP headers passed with a request, or by the major version of the browser that is making the request. You can also define a custom string in the page and implement how you want it to affect the response caching in your application's global.asax file.

ASP.NET allows you to cache multiple versions of a page response declaratively by using attributes on the @ OutputCache directive and programmatically by using the properties and methods of the HttpCachePolicy class.

Specifically, the @OutputCache directive includes three attributes that allow you to cache multiple versions of page output:

The required VaryByParam attribute allows you to vary the cached output depending on GET query string or form POST parameters.

The VaryByHeader attribute allows you to vary the cached output depending on the HTTP header associated with the request.

The VaryByCustom attribute allows you to vary the cached output by browser type or by a custom string that you define.

Note While you must include the VaryByParam attribute in any @ OutputCache directive, you can set its value to None if you do not want to use the functionality it provides.

The HttpCachePolicy class provides two properties and a method that allow you to do the same things that the aforementioned attributes do. The Boolean VaryByParams and VaryByHeaders properties allow you to specify the parameter and header names, respectively, that you want to vary the cache by. The SetVaryByCustom method allows you to define custom strings to vary the output cache by.

Caching Application Data

ASP.NET offers you a powerful, easy-to-use caching mechanism that allows you to store objects that require a large amount of server resources to create in memory. It is implemented by the Cache class, with instances private to each application, and its lifetime is tied to that of the application. When the application is restarted, the instance of its Cache object is recreated.

The Cache class has been designed for ease of use. By using keys paired with values, you can place items in the Cache and later retrieve them. For examples of how to do this, see Adding Items to the Cache and Retrieving Values of Cached Items.

While the Cache class offers a simple interface for you to customize cache settings, it also offers powerful features that allow you to customize how items are cached and how long they are cached. For example, when system memory becomes scarce, the cache automatically removes seldom used or unimportant items to allow memory to be used to process a high volume of requests. This technique is called scavenging. It is one of the ways that the cache ensures that data that is not current does not consume valuable server resources.

You can instruct the Cache to give certain items priority over other items when it performs scavenging. To indicate that a specific item is of greater or lesser importance than another, specify one of the CacheItemPriority enumeration values when you add an item using the Cache.Add method or Cache.Insert method.

You can also establish an expiration policy for an item when you add it to the Cache using the Add method or Insert method. You can define the lifetime for an item by using the absoluteexpiration parameter, which is of the type DateTime and allows you to specify the time the item will expire. You can also use the slidingexpiration parameter, which is of the type TimeSpan. It allows you to specify the time to elapse before the item expires, based on the time it is accessed. Once the item expires, it is removed from the cache. Attempts to retrieve its value will return null unless the item is added to the Cache again.

For volatile items that are stored in the Cache, such as those that have regular data refreshes, or those that are valid for only a set amount of time, set an expiration policy that keeps those items in the Cache as long as their data remains current. For example, if you are writing an application that tracks sports scores by obtaining the data from a frequently updated Web site, you can cache the scores for a game as long as those scores do not change on the source Web site. In this case, you can set an expiration policy that is based on how often the Web site updates the scores. You can write code that determines if an up-to-date score is in the Cache. If the score is not up to date, the code can update the score from the source Web site.

Finally, ASP.NET allows you to define the validity of a cached item, based on an external file, a directory, or another cached item. These are called file dependencies and key dependencies. If a dependency changes, the cached item is invalidated and removed from the Cache. You can use this technique to remove items from the Cache when their data source changes. For example, if you write an application that processes financial data from an XML file, and renders it in a graph, you can insert the data from the file in the Cache and maintain a dependency on that XML file. When the file is updated, the item is removed from the cache, your application rereads the file, and a new version of the item is inserted.

Note The Cache has no information about the content of the items it contains. It merely holds a reference to those objects. It also provides means to track their dependencies and set expiration policies.

BROWSER

Web Server

DNS Server

Query DNS Server – www.torin.com

192.168.1.200

GET /

302 Location: /adu2o155emcqlbme5gofcu45)/

GET /Image1.jpg

HTML Returned

Aspnet_wp.exe

Session[“UserID”] = ToRiN

Session[“email”] = georgi.ivanov@fmi.uni-sofia.bg

Aspnet_wp.exe

Session[“UserID”] is null

Session[“email”] in null

Web Farm using in-process session state.

We b Server 2

We b Server 1

Aspnet_wp.exe

Aspnet_wp.exe

�

State Server

Session[“UserID”] = Georgi Ivanov

ASP.NET State Server allows multiple servers to share state.

PAGE
17

