	

	33, Alexander Malinov Blvd., Sofia, 1729, Bulgaria

Phone: (+359) 2 80-99-862; Fax: (+359) 2 80-99-888
	Page
1 of 5

	

Fundamentals of C# Programming – Intermediate Exam – January 2011
Variant 9
Problem 1 – Text Encryption
Write a program that reads from the console an integer number n (0 < n ≤ 1000) and a sequence c[] of n characters in ASCII encoding and integer numbers k (1 ≤ k ≤ 32, k ≤ 4*n) and p (1 ≤ p ≤ 100). Consider the input sequence c[] as a sequence of bits. Your task is to encrypt c[]. Encryption is made as follows: take the last k bits of the sequence of bits and move them in the middle of the sequence, then take the first k bits of the sequence and move them in the middle, etc. Repeat these two steps p times. Print the obtained sequence of bits as sequence of decimal bytes. The result should consist of n lines printed on the console, containing the bytes in the encrypted sequence c[0], c[1], …, c[n].
Note: You are not allowed to convert the input into a sequence of bits (e.g. as string, as list or as array of bits or as other data structure holding the bits, like BigInteger). You should process the input using bitwise operations over sequences of bytes. Otherwise you will lose half of the points for this problem.

The input data will be correct and it is not required to check it explicitly.

	Sample input

n = 4
c[0] = a
c[1] = b
c[2] = c

c[3] = d
k = 3

p = 2

	Sample output

c[0] = 88

c[1] = 152

c[2] = 145

c[3] = 141

Explanation

The input sequence of 4 ASCII characters c[] is represented as a sequence of 32 bits as follows:
	01100001 01100010 01100011 01100100

As а starting step take the last k=3 bits (i.e. 100) and move them in the middle of the sequence, i.e. between bits 01100010 and 01100011:
	Step 1(r):
	[image: image1.emf]01100001 01100010 01100011 01100100

01100001 01100010 10001100 01101100

As a next step take the first k=3 bits (i.e. 011) and move them in the middle of the sequence:
	Step 1(l):
	[image: image2.emf]01100001 01100010 10001100 01101100

00001011 00010011 10001100 01101100

Perform the last two steps one more time (totally p=2 times):

At the next step take again the last k=3 bits (i.e. 100) and move them in the middle of the sequence:
	Step 2(r):
	[image: image3.emf]00001011 00010011 10001100 01101100

00001011 00010011 10010001 10001101

At the next step take again the first k=3 bits (i.e. 000) and move them in the middle of the sequence:
	Step 2(l):
	[image: image4.emf]00001011 00010011 10010001 10001101

01011000 10011000 10010001 10001101

The obtained sequence of bits after the encryption process is as follows:
	01011000 10011000 10010001 10001101

	Finally print the encrypted sequence as n bytes. Thus the output is as follows (without the comments):

c[0] = 88 // 01011000
c[1] = 152 // 10011000
c[2] = 145 // 10010001
c[3] = 141 // 10001101

Problem 2 – Word Occurrences

Write a program that reads from the console an integer number n (1 ≤ n ≤ 300), a sequence c[] of n lowercase Latin letters in ASCII encoding, an integer number m (1 ≤ m ≤ 50) and a sequence s[] of m words consisting of lowercase Latin letters. Each word consists of minimum 1 and maximum 3 letters. Find how many times each word from s[] can be formed as an ordered subset of letters from c[]:
c[i1], c[i2], …, c[ik] where i1 < i2 < … < ik
The output should be printed on the console and should consist of exactly m lines. Each line should contain the word and how many times it can be formed.

The input data will be correct and it is not required to check it explicitly.

	Sample input

n = 9

c[0] = a

c[1] = x

c[2] = c

c[3] = b

c[4] = a

c[5] = d

c[6] = x

c[7] = a

c[8] = b

m = 5

s[0] = abc

s[1] = xya

s[2] = ab

s[3] = bd

s[4] = az

	Sample output

abc -> 0

xya -> 0

ab -> 4

bd -> 1

az -> 0

Explanation

The word “abc” cannot be formed because there is no letter ‘c’ after ‘b’. There is no letter ‘y’ to form the word “xya”. The word “ab” can be formed in 4 ways: c[0] + c[3], c[0] + c[8], c[4] + c[8], c[7] + c[8]. The word “bd” can be formed only as c[3] + c[5]. The word “az” cannot be formed because there is no letter ‘z’.
Problem 3 – Matrix Folding

We are given a square matrix of 8 x 8 cells, initially filled with dash symbols “-“, a positive integer number n (1 ≤ n ≤ 10), a sequence of n coordinates each on a separate line (row1, col1), …, (rown, coln) and an integer number p (1 ≤ p ≤ 6). The square matrix can be perceived as a model of a board with nails stuck on in the middle of each of the specified cells. We are playing with a sheet of paper with the same size as the board by folding and perforating it p times as described below.
We start folding the paper as follows: first we fold the bottom half up, then we fold the folded paper at its middle from right to left, then again from bottom to up, etc. At each fold we mark the cells that happen to be on the same position as one of the given coordinates (we put the paper over the top left corner of the board and the nails perforate it). The process of folding and perforating the paper should be performed exactly p times, starting with bottom to up.

Your task is to write a program that calculates the number of perforated cells and how the paper looks like after the perforations (in unfolded form).
Rows are numbered from up to down (starting from 0) and columns are numbered from left to right (starting from 0). Coordinates are given in format row number followed by space followed by column number. The input data will be correct and it is not required to check it explicitly.
	Sample input

n = 2

1 1

2 5

p = 2

	Sample output

6

 0 1 2 3 4 5 6 7

0 - - - - - - - -

1 - o - - - - o -

2 - - - - - o - -

3 - - - - - - - -

4 - - - - - - - -

5 - - - - - o - -

6 - o - - - - o -

7 - - - - - - - -

Explanation

	Initially the sheet of paper is perforated at 2 positions over the board:

 0 1 2 3 4 5 6 7

0 - - - - - - - -

1 - o - - - - - -

2 - - - - - o - -

3 - - - - - - - -

4 - - - - - - - -

5 - - - - - - - -

6 - - - - - - - -

7 - - - - - - - -

(unfolded)

	(
	After the first fold (bottom to up) we obtain a sheet of paper perforated at 4 positions:

 0 1 2 3 4 5 6 7

0 - - - - - - - -

1 - o - - - - - -

2 - - - - - o - -

3 - - - - - - - -

4 - - - - - - - -

5 - - - - - o - -

6 - o - - - - - -

7 - - - - - - - -

(unfolded – 8 x 8)

 0 1 2 3 4 5 6 7

0 - - - - - - - -

1 - o - - - - - -

2 - - - - - o - -

3 - - - - - - - -

(folded – 4 x 8)

	(

After the second fold (right to left) we obtain the following matrix:

	 0 1 2 3 4 5 6 7

0 - - - - - - - -

1 - o - - - - o -

2 - - - - - o - -

3 - - - - - - - -

4 - - - - - - - -

5 - - - - - o - -

6 - o - - - - o -

7 - - - - - - - -

(unfolded – 8 x 8)
	 0 1 2 3 4 5 6 7

0 - - - -

1 - o - -

2 - - + -

3 - - - -

(folded – 4 x 4)

At the diagrams above "-" denotes a non-perforated paper, "o" denotes a fully perforated paper and "+" denotes a partially perforated paper.

Problem 4 – “King Survival” Game

Your task is to write an interactive console-based implementation of the game “King Survival” in which the King (K) tries to escape the four pawns (A, B, C, D). The game is played on a standard chess-board of size 8 x 8 cells (half of them white, the other half black).

[image: image5.png]Ktelerik

The King initially is located at row 7 and column 3 and the pawns are located at row 0 and columns 0, 2, 4 and 6. A pawn can only move at neighbor cell down-left or down-right, while the King can go to neighbor cells in 4 directions: down-left, down-right, up-left and up-right. The pawns and the King cannot step outside the chess-board or on a cell that is already occupied. The game is first started by moving the King. At the odd turns the player moves the King and at the even steps the player moves the pawns. Thus the player in fact plays against himself. To make a move the player issues a command consisting of the name of the figure, i.e. "K", followed by the direction to move, e.g. "KUL" means King-Up-Left, "ADL" means Pawn-A-Down-Left. Thus all possible commands are 12: KUL, KUR, KDL, KDR, ADL, ADR, BDL, BDR, CDL, CDR, DDL and DDR.

Write a program that simulates the “King Survival” game as shown in the sample game session. Initially the game starts with the initial board (shown at the figure above) and it's King's turn. After the King moves, its Pawns' move and so on. Before each turn the board is visualized as shown below.

If the King reaches row 0 he wins. If the pawns "catch" the King so that he has no valid moves at odd turn, he loses. If the paws have no valid moves at even turn, the King wins. The game finishes when the King wins or loses. If the King wins, print "King wins" and the number of moves the King has made. If the King loses, print "King loses".
Some players could try to cheat by entering illegal moves, so be cautious. In case of invalid command print "Illegal move!" and enter a command again.
Sample game session

The empty white cells are shown as "+", the empty black cells are shown as "-".The player’s input is shown in italic:

	 0 1 2 3 4 5 6 7

0 | A - B - C – D - |

1 | - + – + – + – + |

2 | + – + – + – + - |

3 | - + – + – + – + |

4 | + – + – + – + - |

5 | - + – + – + – + |

6 | + – + – + – + - |

7 | - + – K – + – + |

King’s turn: KUL
	(
	 0 1 2 3 4 5 6 7

0 | A - B - C – D - |

1 | - + – + – + – + |

2 | + – + – + – + - |

3 | - + – + – + – + |

4 | + – + – + – + - |

5 | - + – + – + – + |

6 | + – K – + – + - |

7 | - + – + – + – + |

Pawns’ turn: ADL
Illegal move!
	(
	 0 1 2 3 4 5 6 7

0 | A - B - C – D - |

1 | - + – + – + – + |

2 | + – + – + – + - |

3 | - + – + – + – + |

4 | + – + – + – + - |

5 | - + – + – + – + |

6 | + – K – + – + - |

7 | - + – + – + – + |

Pawns’ turn: ADR
	(

	

	 0 1 2 3 4 5 6 7

0 | + - B - C – D - |

1 | - A – + – + – + |

2 | + – + – + – + - |

3 | - + – + – + – + |

4 | + – + – + – + - |

5 | - + – + – + – + |

6 | + – K – + – + - |

7 | - + – + – + – + |

King’s turn: KUR
	(
	 0 1 2 3 4 5 6 7

0 | + - B - C – D - |

1 | - A – + – + – + |

2 | + – + – + – + - |

3 | - + – + – + – + |

4 | + – + – + – + - |

5 | - + – K – + – + |

6 | + – + – + – + - |

7 | - + – + – + – + |

Pawns’ turn: ADL
	(
	 0 1 2 3 4 5 6 7

0 | + - B - C – D - |

1 | - + – + – + – + |

2 | A – + – + – + - |

3 | - + – + – + – + |

4 | + – + – + – + - |

5 | - + – K – + – + |

6 | + – + – + – + - |

7 | - + – + – + – + |

King’s turn: KUR
	(

	

	 0 1 2 3 4 5 6 7

0 | + - B - C – D - |

1 | - + – + – + – + |

2 | A – + – + – + - |

3 | - + – + – + – + |

4 | + – + – K – + - |

5 | - + – + – + – + |

6 | + – + – + – + - |

7 | - + – + – + – + |

Pawns’ turn: BDR
	(
	 0 1 2 3 4 5 6 7

0 | + - + - C – D - |

1 | - + – B – + – + |

2 | A – + – + – + - |

3 | - + – + – + – + |

4 | + – + – K – + - |

5 | - + – + – + – + |

6 | + – + – + – + - |

7 | - + – + – + – + |

King’s turn: KUL
	(
	 0 1 2 3 4 5 6 7

0 | + - + - C – D - |

1 | - + – B – + – + |

2 | A – + – + – + - |

3 | - + – K – + – + |

4 | + – + – + – + - |

5 | - + – + – + – + |

6 | + – + – + – + - |

7 | - + – + – + – + |

Pawns’ turn: BDL
	(

	

	 0 1 2 3 4 5 6 7

0 | + - + - C – D - |

1 | - + – + – + – + |

2 | A – B – + – + - |

3 | - + – K – + – + |

4 | + – + – + – + - |

5 | - + – + – + – + |

6 | + – + – + – + - |

7 | - + – + – + – + |

King’s turn: KUR
	(
	 0 1 2 3 4 5 6 7

0 | + - + - C – D - |

1 | - + – + – + – + |

2 | A – B – K – + - |

3 | - + – + – + – + |

4 | + – + – + – + - |

5 | - + – + – + – + |

6 | + – + – + – + - |

7 | - + – + – + – + |

Pawns’ turn: CDL
	(
	 0 1 2 3 4 5 6 7

0 | + - + - + – D - |

1 | - + – C – + – + |

2 | A – B – K – + - |

3 | - + – + – + – + |

4 | + – + – + – + - |

5 | - + – + – + – + |

6 | + – + – + – + - |

7 | - + – + – + – + |

King’s turn: KUR
	(

	

	 0 1 2 3 4 5 6 7

0 | + - + - + – D - |

1 | - + – C – K – + |

2 | A – B – + – + - |

3 | - + – + – + – + |

4 | + – + – + – + - |

5 | - + – + – + – + |

6 | + – + – + – + - |

7 | - + – + – + – + |

Pawns’ turn: DDR
	(
	 0 1 2 3 4 5 6 7

0 | + - + - + – + - |

1 | - + – C – K – D |

2 | A – B – + – + - |

3 | - + – + – + – + |

4 | + – + – + – + - |

5 | - + – + – + – + |

6 | + – + – + – + - |

7 | - + – + – + – + |

King's turn: KUR
	(
	 0 1 2 3 4 5 6 7

0 | + - + - + – K - |

1 | - + – C – + – D |

2 | A – B – + – + - |

3 | - + – + – + – + |

4 | + – + – + – + - |

5 | - + – + – + – + |

6 | + – + – + – + - |

7 | - + – + – + – + |

King wins in 7 turns.
	

General Notes

Each problem gives up to 10 points, and the entire exam gives up to 40 points.

The execution time limit for all problems is 30 seconds.

Time allowed for the entire exam: 6 hours.
[image: image6.png]© 1 2 3 4 5 6 7

<

® = &N M & n W N

